Skip to main content
Log in

Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole (γ,γ) method

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Stark, A.N. Heays, J.R. Lyons et al., Astrophys. J. 788, 67 (2014)

    Article  ADS  Google Scholar 

  2. W.F. Chan, G. Cooper, C.E. Brion, Phys. Rev. A 44, 186 (1991)

    Article  ADS  Google Scholar 

  3. E. Krishnakumar, S.K. Srivastava, Astrophys. J. 307, 795 (1986)

    Article  ADS  Google Scholar 

  4. R.C.G. Ligtenberg, P.J.M. van der Burgt, S.P. Renwick et al., Phys. Rev. A 49, 2363 (1994)

    Article  ADS  Google Scholar 

  5. H. Kawahara, D. Suzuki, H. Kato et al., J. Chem. Phys. 131, 114307 (2009)

    Article  ADS  Google Scholar 

  6. B.P. Xie, L.F. Zhu, K. Yang et al., Phys. Rev. A 82, 032501 (2010)

    Article  ADS  Google Scholar 

  7. L.F. Zhu, L.S. Wang, B.P. Xie et al., J. Phys. B: At. Mol. Opt. Phys. 44, 025203 (2011)

    Article  ADS  Google Scholar 

  8. L.Q. Xu, Y.W. Liu, X. Kang et al., Sci. Rep. 5, 18350 (2015)

    Article  ADS  Google Scholar 

  9. X. Xu, D.D. Ni, X. Kang et al., J. Phys. B: At. Mol. Opt. Phys. 49, 064010 (2016)

    Article  ADS  Google Scholar 

  10. Y.W. Liu, X. Kang, L.Q. Xu et al., Astrophys. J. 819, 142 (2016)

    Article  ADS  Google Scholar 

  11. X. Kang, Y.W. Liu, L.Q. Xu et al., Astrophys. J. 807, 96 (2015)

    Article  ADS  Google Scholar 

  12. P.E. Grabowski, D.F. Chernoff, Phys. Rev. A 84, 042505 (2011)

    Article  ADS  Google Scholar 

  13. W.L. Wiese, J.R. Fuhr, J. Phys. Chem. Ref. Data 3, 565 (2009)

    Article  ADS  Google Scholar 

  14. G.W.F. Drake, D.C. Morton, Astrophys. J. Suppl. Ser. 170, 251 (2007)

    Article  ADS  Google Scholar 

  15. M.K. Chen, J. Phys. B: At. Mol. Opt. Phys. 27, 865 (1994)

    Article  ADS  Google Scholar 

  16. M.K. Chen, J. Phys. B: At. Mol. Opt. Phys. 27, 4847 (1994)

    Article  ADS  Google Scholar 

  17. J.A. Fernley, K.T. Taylor, M.J. Seaton, J. Phys. B: At. Mol. Opt. Phys. 20, 6457 (1987)

    Article  ADS  Google Scholar 

  18. A. Kono, S. Hattori, Phys. Rev. A 29, 2981 (1984)

    Article  ADS  Google Scholar 

  19. C.E. Theodosiou, Phys. Rev. A 30, 2190 (1984)

    Google Scholar 

  20. Z.P. Zhong, R.F. Feng, S.L. Wu, L.F. Zhu, X.J. Zhang, K.Z. Xu, J. Phys. B: At. Mol. Opt. Phys. 30, 5305 (1997)

    Article  ADS  Google Scholar 

  21. R.F. Feng, B.X. Yang, S.L. Wu, S.L. Xing, F. Zhang, Z.P. Zhong, X.Z. Guo, K.Z. Xu, Sci. China Ser. A 39, 1288 (1996)

    Google Scholar 

  22. A.M. Skerbele, E.N. Lassettre, J. Chem. Phys. 40, 1271 (1964)

    Article  ADS  Google Scholar 

  23. S. Tsurubuchi, K. Watanabe, T. Arikawa, J. Phys. Soc. Jpn 59, 497 (1990)

    Article  ADS  Google Scholar 

  24. J.P.D. Jongh, J. van Eck, Physica 51, 104 (1971)

    Article  ADS  Google Scholar 

  25. R. Hippler, K.H. Schartner, J. Phys. B: At. Mol. Phys. 7, 618 (1974)

    Article  ADS  Google Scholar 

  26. H. Kawahara, H. Kato, M. Hoshino et al., Phys. Rev. A 77, 012713 (2008)

    Article  ADS  Google Scholar 

  27. Z.P. Zhong, S.L. Wu, K.Z. Xu et al., Acta Phys. Sin. 47, 419 (1998) and the references therein

    Google Scholar 

  28. W.F. Chan, G. Cooper, R.N.S. Sodhi et al., Chem. Phys. 170, 81 (1993)

    Article  ADS  Google Scholar 

  29. M. Eidelsberg, Y. Sheffe, S.R. Federman et al., Astrophys. J. 647, 1543 (2006)

    Article  ADS  Google Scholar 

  30. S.R. Federman, M. Fritts, S. Cheng et al., Astrophys. J. Suppl. Ser. 134, 133 (2001)

    Article  ADS  Google Scholar 

  31. K. Kirby, D.L. Cooper, J. Chem. Phys. 90, 4895 (1989)

    Article  ADS  Google Scholar 

  32. L. Chantranupong, K. Bhanuprakash, M. Honigmann, G. Hirsch, R.J. Buenker, Chem. Phys. 161, 351 (1992)

    Article  ADS  Google Scholar 

  33. A.B. Rocha, I. Borges, C.E. Bielschowsky, Phys. Rev. A 57, 4394 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Fan Zhu.

Additional information

Contribution to the Topical Issue “Atomic and Molecular Data and their Applications”, edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LQ., Liu, YW., Xu, X. et al. Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole (γ,γ) method. Eur. Phys. J. D 71, 183 (2017). https://doi.org/10.1140/epjd/e2017-70812-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70812-8

Navigation