Skip to main content
Log in

Phonon-mediated nuclear spin relaxation in H2O

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A theoretical model of the phonon-mediated nuclear spin relaxation in H2O trapped by cryomatrices has been established for the first time. In order to test the validity of this model, we measured infrared spectra of H2O trapped in solid Ar, which showed absorption peaks due to rovibrational transitions of ortho- and para-H2O in the spectral region of the bending vibration. We monitored the time evolution of the spectra and analyzed the rotational relaxation associated with the nuclear spin flip to obtain the relaxation rates of H2O at temperatures of 5–15 K. Temperature dependence of the rate is discussed in terms of the devised model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Mumma, H.A. Weaver, H.P. Larson, D.S. Davis, M. Williams, Science 232, 1523 (1986)

    Article  ADS  Google Scholar 

  2. M.J. Mumma, H.A. Weaver, H.P. Larson, Astron. Astrophys. 187, 419 (1987)

    ADS  Google Scholar 

  3. M. Emprechtinger, D.C. Lis , T. Bell, T.G. Phillips, P. Schilke, C. Comito, R. Rolffs, F. van der Tak, C. Ceccarelli et al., A&A 521, L28 (2010)

    Article  ADS  Google Scholar 

  4. A. Miani, J. Tennyson, J. Chem. Phys. 120, 2732 (2004)

    Article  ADS  Google Scholar 

  5. M.E. Fajardo, S. Tam, M.E. DeRose, J. Mol. Struct. 695, 111 (2004)

    Article  ADS  Google Scholar 

  6. L. Abouaf-Marguin, A.M. Vasserot, C. Pardanaud, X. Michaut, Chem. Phys. Lett. 447, 232 (2007)

    Article  ADS  Google Scholar 

  7. L. Abouaf-Marguin, A.M. Vasserot, C. Pardanaud, X. Michaut, Chem. Phys. Lett. 480, 82 (2009)

    Article  ADS  Google Scholar 

  8. R. Sliter, M. Gish, A.F. Vilesov, J. Phys. Chem. A 115, 9682 (2011)

    Article  Google Scholar 

  9. J.R.F. Curl, J.V.V. Kasper, K.S. Pitzer, J. Chem. Phys. 46, 3220 (1967)

    Article  ADS  Google Scholar 

  10. P.L. Chapovsky, Phys. Rev. Lett. 43, 3624 (1991)

    ADS  Google Scholar 

  11. P. Cacciani, J. Cosléou, M. Khelkhal, Phys. Rev. A 85, 012521 (2012)

    Article  ADS  Google Scholar 

  12. C. Pardanaud, Ph.D. thesis, Université Pierre et Marie Curie-Paris 6 (2007)

  13. W. Gordy, R.L. Cook, Microwave Molecular Spectra, 3rd edn. (Wiley, 1984)

  14. Y. Miyamoto, M. Fushitani, D. Ando, T. Momose, J. Chem. Phys. 128, 114502 (2008)

    Article  ADS  Google Scholar 

  15. J.H.V. Vleck, Phys. Rev. 57, 426 (1940)

    Article  ADS  Google Scholar 

  16. R. de L. Kronig, Physics 6, 33 (1939)

    Google Scholar 

  17. R. Orbach, Proc. Roy. Soc. A 264, 458 (1961)

    Article  ADS  Google Scholar 

  18. P.L. Scott, C.D. Jeffries, Phys. Rev. 127, 32 (1962)

    Article  ADS  Google Scholar 

  19. S. Grieger, H. Friedrich, B. Asmussen, K. Guckelsberger, D. Nettling, W. Press, R. Scherm, Z. Phys. B 87, 203 (1992)

    Article  ADS  Google Scholar 

  20. T. Sugimoto, K. Yamakawa, I. Arakawa, J. Chem. Phys. 143, 224305 (2015)

    Article  ADS  Google Scholar 

  21. A. Lekic, Ph.D. thesis, Université Pierre et Marie Curie-Paris 6 (2011)

  22. J. Tennyson, N.F. Zobov, R. Williamson, O.L. Polyansky, P.F. Bernath, J. Phys. Chem. Ref. Data 30, 735 (2001)

    Article  ADS  Google Scholar 

  23. X. Michaut, A.M. Vasserot, L. Abouaf-Marguin, Vib. Spectrosc. 34, 83 (2004)

    Article  Google Scholar 

  24. S.O. Feodosyev, I.A. Gospodarev, V.O. Kruglov, E.V. Manzhelii, J. Low. Temp. Phys. 139, 651 (2005)

    Article  ADS  Google Scholar 

  25. M.L. Klein, J.A. Venables, Rare Gas Solids (Academic Press, 1976), Vol. 1

  26. J.P. Perchard, Chem. Phys. 273, 217 (2001)

    Article  ADS  Google Scholar 

  27. S. Hirabayashi, K. Ohno, H. Abe, K.M.T. Yamada, J. Chem. Phys. 122, 194506 (2005)

    Article  ADS  Google Scholar 

  28. C. Pardanaud, A.M. Vasserot, X. Michaut, L. Abouaf-Marguin, J. Mol. Struct. 873, 181 (2008)

    Article  ADS  Google Scholar 

  29. A. Engdahl, B. Nelander, J. Mol. Struct. 193, 101 (1989)

    Article  ADS  Google Scholar 

  30. X. Michaut, A.M. Vasserot, L. Abouaf-Marguin, Low Temp. Phys. 29, 852 (2003)

    Article  ADS  Google Scholar 

  31. K. Yamakawa, N. Ehara, N. Ozawa, I. Arakawa, AIP Adv. 6, 075302 (2016)

    Article  ADS  Google Scholar 

  32. J.H. Fillion, M. Bertin, A. Lekic, A. Moudens, L. Philippe, X. Michaut, EAS Publ. Ser. 58, 307 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Yamakawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakawa, K., Azami, S. & Arakawa, I. Phonon-mediated nuclear spin relaxation in H2O. Eur. Phys. J. D 71, 70 (2017). https://doi.org/10.1140/epjd/e2017-70642-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70642-8

Keywords

Navigation