Skip to main content
Log in

Structural, electronic and magnetic properties of Ti n Mo (n = 1 − 7) clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ground state structures of Ti n Mo and Ti n+1 (n = 1 − 7) clusters and their structural, electronic and magnetic properties are investigated with the density functional method at B3LYP/LanL2DZ level. One Mo atom substituted Ti n+1 structure is the dominant growth pattern, and the Ti n Mo clusters exhibit enhanced structural stabilities according to the averaged binding energies. The electronic properties are also discussed by investigating chemical hardness and HOMO-LUMO energy gap. The results reveal that Ti3Mo and Ti5Mo keep higher chemical stabilities when compared with the other clusters. For all the studied clusters, the Mo atoms always get electrons from Ti atoms and present negative charges. Moreover, the doping of Mo in the bare titanium clusters can alter the magnetic moments of them. Ti3Mo and Ti5Mo show relatively large total magnetic moments, which may be related to the presence of exchange splitting behavior in their densities of states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Baletto, R. Ferrandos, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  2. H. Harberland, Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms (Springer-Verlag, Berlin, 1994), p. 2

  3. S.R. Liu, H.J. Zhai, M. Castro, L.S. Wang, J. Chem. Phys. 118, 2108 (2003)

    Article  ADS  Google Scholar 

  4. M. Sakurai, K. Watanabe, K. Sumiyama, K. Suzuki, J. Chem. Phys. 111, 235 (1999)

    Article  ADS  Google Scholar 

  5. A. Ferligoj, in Proceedings of 19th International Conference Information Technology Interfaces, ITI ’97, edited by D. Kalpic, V.H. Dobric (Pula, Croatia, 1997), p. 253

  6. S. Wallace, L.L. Huang, C.F. Matta, L. Massa, I. Bernal, C. R. Chimie 15, 700 (2012)

    Article  Google Scholar 

  7. J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  8. M.D. Morse, Chem. Rev. 86, 1049 (1988)

    Article  Google Scholar 

  9. W.Q. Zhang, X.R. Ran, H.T. Zhao, L.C. Wang, J. Chem. Phys. 121, 7714 (2004)

    ADS  Google Scholar 

  10. X.F. Sheng, G.F. Zhao, L.L. Zhi, J. Phys. Chem. 112, 17828 (2008)

    Google Scholar 

  11. L.P. Ding, X.Y. Kuang, P. Shao, Y.R. Zhao, Y.F. Li, Chin. Phys. B 21, 043601 (2012)

    Article  ADS  Google Scholar 

  12. C.J. Feng, Y.H. Xue, X.Y. Zhang, X.C. Zhang, Chin. Phys. B 18, 1436 (2008)

    ADS  Google Scholar 

  13. K.T. Qi, H.P. Mao, H.Y. Wang, Y. Sheng, Chin. Phys. B 19, 033602 (2010)

    Article  ADS  Google Scholar 

  14. D. Chattaraj, Eur. Phys. J. D 68, 302 (2014)

    Article  ADS  Google Scholar 

  15. Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Phys. Lett. A 358, 289 (2006)

    Article  ADS  Google Scholar 

  16. S.-V. Martin, H.H.T. Pedro, P. Umapada, F.R.S. Jose, I.R.M. Jose, A.A. Jorge, J. Phys. Chem. 110, 10274 (2006)

    Article  Google Scholar 

  17. J. Medina, R. de Coss, A. Tapia, G. Canto, Eur. Phys. J. B 76, 427 (2010)

    Article  ADS  Google Scholar 

  18. H.Q. Sun, Y. Ren, Z.F. Wu, N. Xu, Comput. Theor. Chem. 1062, 74 (2015)

    Article  Google Scholar 

  19. J.Q. Wen, G.X. Chen, Journal of Shanxi Normal University (Natural Science Edition) 36, 42 (2008)

    Google Scholar 

  20. K.T. Qi, B. Li, M.J. Tu, Y. Sheng, Journal of Sichuan University (Natural Science Edition) 45, 854 (2008)

    Google Scholar 

  21. S.H. Wei, Z. Zeng, J.Q. You, X.H. Yan, X.G. Gong, J. Chem. Phys. 113, 11127 (2000)

    Article  ADS  Google Scholar 

  22. J.G. Du, H.Y. Wang, G. Jiang, J. Mol. Struct.: Theochem. 817, 7 (2007)

    Article  Google Scholar 

  23. J.D. Du, X.Y. Sun, G. Jiang, Eur. Phys. J. D 55, 111 (2009)

    Article  ADS  Google Scholar 

  24. J. Xiang, S.H. Wei, X.H. Yan, J.Q. You, Y.L. Mao, J. Chem. Phys. 120, 4251 (2004)

    Article  ADS  Google Scholar 

  25. Y. Liu, W.F. Wei, K.C. Zhou, L.F. Chen, H.P. Tang, J. Cent. South Univ. T 10, 81 (2003)

    Article  Google Scholar 

  26. J.R.S. Martins, R.O. Araujo, R.A. Nogueira, C.R. Grandini, Arch. Metall. Mater. 61, 25 (2016)

    Article  Google Scholar 

  27. Y. Zhao, H. Zhen, S. Liu, R. Yang, L.B. Wang, Acta Metall. Sin. 39, 89 (2003)

    Google Scholar 

  28. N.T.C. Oliveira, G. Aleixo, R. Caram, A.C. Guastaldi, Mater. Sci. Eng. A 452–453, 727 (2007)

    Article  Google Scholar 

  29. Z.F. Gao, Q.Y. Li, F. He, Y. Huang, Y.Z. Wan, Mater. Des. 42, 13 (2012)

    Article  Google Scholar 

  30. L.Q. Shi, Z.Y. Zhou, G.Q. Zhao, Acta Metall. Sin. 36, 530 (2000)

    Google Scholar 

  31. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  32. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  33. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  ADS  Google Scholar 

  34. M. Doverstål, L. Karlsson, B. Lindgren, U. Sassenberg, Chem. Phys. Lett. 270, 273 (1997)

    Article  ADS  Google Scholar 

  35. Yu.M. Efremov, A.N. Samoilova, V.B. Kozhukhovsky, L.V. Gurvich, J. Mol. Spectrosc. 73, 430 (1978)

    Article  ADS  Google Scholar 

  36. J.B. Hopkins, P.R.R. Langridge-Smith, M.D. Morse, R.E. Smalley, J. Chem. Phys. 78, 1627 (1983)

    Article  ADS  Google Scholar 

  37. F. Aguilera-Granja, A. Vega, L.J. Gallego, Nanotechnology 19, 145704 (2008)

    Article  ADS  Google Scholar 

  38. J. Andzelm, E. Radzio, D.R. Salahub, J. Chem. Phys. 83, 4573 (1985)

    Article  ADS  Google Scholar 

  39. R. Pis Diez, Int. J. Quantum Chem. 76, 105 (2000)

    Article  Google Scholar 

  40. S.R. Liu, H.J. Zhai, M. Castro, L.S. Wang, J. Chem. Phys. 118, 2108 (2003)

    Article  ADS  Google Scholar 

  41. B. Simard, M.A. Lebeault-Dorget, A. Marijnissen, J.J.T. Meulen, J. Chem. Phys. 108, 9668 (1998)

    Article  ADS  Google Scholar 

  42. L. Guo, J. Alloys Compd. 527, 197 (2012)

    Article  Google Scholar 

  43. R.G. Pearson, J. Chem. Educ. 64, 561 (1987)

    Article  Google Scholar 

  44. H.K. Yuan, H. Chen, Acta Metall. Sin. 42, 1285 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sheng.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2017-70589-8

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhai, Z. & Sheng, Y. Structural, electronic and magnetic properties of Ti n Mo (n = 1 − 7) clusters. Eur. Phys. J. D 71, 82 (2017). https://doi.org/10.1140/epjd/e2017-70589-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70589-8

Keywords

Navigation