Skip to main content
Log in

A theoretical quantum chemical study of alanine formation in interstellar medium

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G(d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wincel, R.H. Fokkens, N.M.M. Nibbering, Rapid Commun. Mass Spectrom. 14, 135 (2000)

    Article  Google Scholar 

  2. E. Herbst, Chem. Soc. Rev. 30, 168 (2001)

    Article  Google Scholar 

  3. V. Blagojevic, S. Petrie, D.K. Bohme, Mon. Not. R. Astron. Soc. 339, L7 (2003)

    Article  ADS  Google Scholar 

  4. L.E. Orgel, Biochem. Mol. Biol. 39, 99 (2004)

    Google Scholar 

  5. P.H. Abelson, Proc. Natl. Acad. Sci. 55, 1365 (1966)

    Article  ADS  Google Scholar 

  6. L. Majumdar, A. Das, S.K. Chakrabarti, S. Chakrabarti, New Astron. 15 (2013)

  7. C. Meinert, P.D. Marcellus, L.L.S. d’Hendecourt, L. Nahon, N.C. Jones, S.V. Hoffmann, J.H. Bredehöft, U.J. Meierhenrich, Phys. Life Rev. 8, 307 (2011)

    Article  ADS  Google Scholar 

  8. Y. Hirata, S. Kubota, S. Watanabe, T. Momose, K. Kawaguchi, J. Mol. Spectrosc. 251, 314 (2008)

    Article  ADS  Google Scholar 

  9. A. Brack, The Molecular Origins of Life (Cambridge University Press, Cambridge, UK, 1998)

  10. G. Nelson, J. Chandrashekar, M. Hoon, L.X. Feng, G. Zhao, N.J.P. Ryba, C.S. Zuker, Nature 416, 199 (2002)

    Article  ADS  Google Scholar 

  11. J.L. Bada, D.P. Glavin, G.D. Mcdonald, L. Becker, Science 279, 362 (1998)

    Article  ADS  Google Scholar 

  12. D.P. Glavin, J.L. Bada, K.L.F. Brinton, G.D. Mcdonald, Proc. Natl. Acad. Sci. 96, 8835 (1999)

    Article  ADS  Google Scholar 

  13. S. Pizzarello, W. Yi, G.M. Chaban, Geochim. Cosmochim. Acta 74, 6206 (2010)

    Article  ADS  Google Scholar 

  14. P. Ehrenfreund, M.P. Bernstein, J.P. Dworkin, S.A. Sandford, L.J. Allamandola, Astrophys. J. 550, L95 (2001)

    Article  ADS  Google Scholar 

  15. C. Mendoza, F. Ruette, G. Martorell, L.S. Rodríguez, Astrophys. J. 601, L59 (2004)

    Article  ADS  Google Scholar 

  16. D.E. Woon, Int. J. Quantum Chem. 88, 226 (2002)

    Article  Google Scholar 

  17. M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola, Nature 416, 401 (2002)

    Article  ADS  Google Scholar 

  18. W.A Schutte, L.J. Allamandola, S.A. Sandford, Science 259, 1143 (1993)

    Article  ADS  Google Scholar 

  19. W.A. Schutte, L.J. Allamandola, S.A. Sandford, Icarus 104, 118 (1993)

    Article  ADS  Google Scholar 

  20. D.E. Woon, Icarus 142, 550 (1999)

    Article  ADS  Google Scholar 

  21. D.E. Woon, Icarus 149, 277 (2001)

    Article  ADS  Google Scholar 

  22. D.E. Woon, J. Phys. Chem. A 105, 9478 (2001)

    Article  Google Scholar 

  23. D.E. Woon, Astrophys. J. 571, L177 (2002)

    Article  ADS  Google Scholar 

  24. J. Bailey, A. Chrvsostomou, J.H. Hough, T.M. Gledhill, A. McCall, S. Clark, F. Menard, M. Tamura, Science 281, 672 (1998)

    Article  ADS  Google Scholar 

  25. P.D. Godfrey, S. Firth, L.D. Hatherley, R.D. Brown, A.P. Pierlot, J. Am. Chem. Soc. 115, 9687 (1993)

    Article  Google Scholar 

  26. S. Blanco, A. Lesarri, J.C. Lòpez, J.L. Alonso, J. Am. Chem. Soc. 126, 11675 (2004)

    Article  Google Scholar 

  27. S. Chakrabarti, S.K. Chakrabarti, Astron. Astrophys. 354, L6 (2000)

    ADS  Google Scholar 

  28. L. Majumdar, A. Das, S.K.S. Chakrabarti, RA&A 12, 1613 (2012)

    Google Scholar 

  29. P. Ehrenfreund, S.B. Charnley, in Exo-/Astro-Biology, edited by P. Ehrenfreund, O. Angerer, B. Battrick (ESA SP-496, 2001), p. 35

  30. E.S. Wirström, P. Bergman, Å. Hjalmarson, A. Nummelin, Astron. Astrophys. 473, 177 (2007)

    Article  ADS  Google Scholar 

  31. G.M.C. Munoz, U.J. Meierhenrich, W.A. Schutte, B. Barbler, A.A. Segovia, H. Rosenbauer et al., Nature 416, 403 (2002)

    Article  ADS  Google Scholar 

  32. A.C. Evans, C. Meinert, C. Giri, F. Goesmannc, U.J. Meierhenrich, Chem. Soc. Rev. 41, 5447 (2012)

    Article  Google Scholar 

  33. V. Barone, Chem. Phys. Lett. 383, 528 (2004)

    Article  ADS  Google Scholar 

  34. A.D. Boese, J.M.L. Martin, J. Phys. Chem. A 108, 3085 (2004)

    Article  Google Scholar 

  35. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.J Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegaw, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03W (Gaussian, Inc., Pittsburgh, PA, 2003)

  36. A. Vladimir Bausik, J. Phys. Chem. A. 105, 4252 (2001)

    Article  Google Scholar 

  37. A.P. Scott, L. Radom, J. Phys. Chem. 100, 16502 (1996)

    Article  Google Scholar 

  38. T. Su, W.J. Chesnavich, J. Chem. Phys. 76, 5183 (1982)

    Article  ADS  Google Scholar 

  39. D.R. Bates, Astrophys. J. 270, 564 (1983)

    Article  ADS  Google Scholar 

  40. J. Anthony Remijan, J.M. Hollis, F.J. Lovas, D.F. Plusquellic, P.R. Jewell, Astrophys. J. 632, 333 (2005)

    Article  ADS  Google Scholar 

  41. D.N. Friedel, L.E. Snyder, B.E. Turner, A. Remijan, Astrophys. J. 600, 234 (2004)

    Article  ADS  Google Scholar 

  42. A. Nummelin, P. Bergman, A. Hjalmarson, P. Friberg, W.M. Irvine, T.J. Millar, M. Ohishi, S. Saito, Astrophys. J. Sci. 117, 427 (1998)

    Article  ADS  Google Scholar 

  43. G.R. Carruthers, Astrophys. J. 161, L81 (1970)

    Article  ADS  Google Scholar 

  44. D. Quan, E. Herbst, Astron. Astrophys. 474, 521 (2007)

    Article  ADS  Google Scholar 

  45. C.M. Leung, E. Herbst, W.F. Huebner, Astrophys. J. Sci. 56, 231 (1984)

    Article  ADS  Google Scholar 

  46. W.M. Irvine, P. Friberg, N. Kaifu, H.E. Matthews, Y.C. Minh, M. Ohishi, S. Ishikawa, Astron. Astrophys. 229, L9 (1990)

    ADS  Google Scholar 

  47. S. Ioppolo, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Mon. Not. R. Astron. Soc. 410, 1089 (2011)

    Article  ADS  Google Scholar 

  48. G. Iseri, Diploma thesis, University of Frankfurt, 2003

  49. D. Kivelson, E.B. Wilson, J. Chem. Phys. 20, 1575 (1952)

    Article  ADS  Google Scholar 

  50. V. Barone, J. Chem. Phys. 122, 014108 (2005)

    Article  ADS  Google Scholar 

  51. R.G. Parr, W. Yang, Density functional theory of atoms and molecules (Oxford University Press, Oxford, 1989)

  52. R.N. Singh, A. Kumar, R.K. Tiwari, P. Rawat, R. Manohar, Struct. Chem. 24, 713 (2013)

    Article  Google Scholar 

  53. M.P. Andersson, P. Uvdal, J. Phys. Chem. A 109, 2937 (2005)

    Article  Google Scholar 

  54. J.M.L. Martin, C. Van Alsenoy, GAR2PED, Computer Software (University of Antwerp, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Misra.

Additional information

Contribution to the Topical Issue “Low-Energy Interactions related to Atmospheric and Extreme Conditions”, edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivani, Pandey, P., Misra, A. et al. A theoretical quantum chemical study of alanine formation in interstellar medium. Eur. Phys. J. D 71, 215 (2017). https://doi.org/10.1140/epjd/e2017-70575-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70575-2

Navigation