Skip to main content
Log in

Single and double over-barrier ionization of He, He+ and Ne system by positron impact

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The classical over-barrier ionization model (COBI) method and trajectory calculations were utilized to simulate the ionization of He+ impacted by a positron. The calculated ionization cross sections of He+ agree with other theoretical data. Additionally, we found that the double ionization of He has a definite association with the positron-He+ impact. This result can explain why doubly ionized He seemed to be positron-scattered by the rest of the He+ in our previous study. The COBI model was also extended to study the double ionization caused by positron-Ne impacts. Our theoretical results agree with the experimental data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.C. Montanari, J.E. Miraglia, J. Phys.: Conf. Ser. L 583, 012018 (2015)

    Google Scholar 

  2. G. Laricchia, D.A. Cooke, A. Kover, S.J. Brawley, Experimental Aspects of Ionization Studies by Positron, Positronium Impact (Cambridge University Press, 2013), Vol. 56, pp. 116–136

  3. R.J. Drachman, Nucl. Instrum. Methods Phys. Res. Sec. B 143, 1 (1988)

    Article  ADS  Google Scholar 

  4. D.A. Cooke, D.J. Murtagh, G. Laricchia, Phys. Rev. Lett. 104, 073201 (2010)

    Article  ADS  Google Scholar 

  5. D.A. Cooke, D.J. Murtagh, A. Kover, G. Laricchia, Nucl. Instrum. Methods Phys. Res. Sec. B 266, 466 (2008)

    Article  ADS  Google Scholar 

  6. D. Fromme, G. Kruse, W. Raith, G. Sinapius, Phys. Rev. Lett. 57, 3031 (1986)

    Article  ADS  Google Scholar 

  7. F.M. Jacobsen, N.P. Frandsen, H. Knudsen, U. Mikkelsen, D.M. Schrader, J. Phys. B: At. Mol. Opt. Phys. 28, 4691 (1995)

    Article  ADS  Google Scholar 

  8. J. Moxom, D.M. Schrader, G. Laricchia, Jun Xu, L.D. Hulett, Phys. Rev. A 60, 2940 (1999)

    Article  ADS  Google Scholar 

  9. J. Moxom, G. Laricchia, M. Charlton, J. Phys. B: At. Mol. Opt. Phys. 28, 1331 (1995)

    Article  ADS  Google Scholar 

  10. H. Bluhme, H. Knudsen, J.P. Merrison, M.R. Poulsen, Phys. Rev. Lett. 81, 73 (1998)

    Article  ADS  Google Scholar 

  11. J. Moxom, J. Phys. B: At. Mol. Phys. 33, 481 (2000)

    Article  ADS  Google Scholar 

  12. R.E. Olson, Phys. Rev. A 36, 1519 (1987)

    Article  ADS  Google Scholar 

  13. D.R. Schultz, R.E. Olson, Phys. Rev. A 38, 1866 (1988)

    Article  ADS  Google Scholar 

  14. A.S. Kheifets, Phys. Rev. A 69, 032712 (2004)

    Article  ADS  Google Scholar 

  15. N. Simonovic, D. Lukic, P. Grujc, J. Phys. B: At. Mol. Opt. Phys. 38, 3147 (2005)

    Article  ADS  Google Scholar 

  16. M. Basu, P.S. Mazumdar, A.S. Ghosh, Phys. B: At. Mol. Opt. Phys. 18, 369 (1985)

    Article  ADS  Google Scholar 

  17. K.L. Baluja, A. Jain, Phys. Rev. A 46, 1279 (1992)

    Article  ADS  Google Scholar 

  18. Z. Chen, A.Z. Msezanem, Phys. Rev. A 49, 1752 (1994)

    Article  ADS  Google Scholar 

  19. C. Dal. Cappello, A. Haddadou, F. Menas, A.C. Roy, J. Phys. B: At. Mol. Opt. Phys. 44, 015204 (2011)

    Article  ADS  Google Scholar 

  20. J.X. Shao, X.M. Chen, Z.Y. Liu, R. Qi, X.R. Zou, Phys. Rev. A 77, 042711 (2008)

    Article  ADS  Google Scholar 

  21. A.X. Yang, X.R. Zou, C.N. Lin, W.B. Liu, S.T. Niu, X.M. Chen, J.X. Shao, Phys. Rev. A 91, 022701 (2015)

    Article  ADS  Google Scholar 

  22. C.C. Montanari, J.E. Miraglia, J. Phys. B: At. Mol. Phys. 48, 165203 (2015)

    Article  ADS  Google Scholar 

  23. M. Zhou, X.R. Zou, S.Y. Wang, C. Cheng, W. Zhou, X. Ma, J.X. Shao, X.M. Chen, Laser, Particle Beams 31, 561 (2013)

    Article  Google Scholar 

  24. N. Bohr, J. Lindhard, K. Dan Vidensk. Selsk. Mat. Fys. Medd. 28, 7 (1954)

    Google Scholar 

  25. J.C. Slater, Phys. Rev. 36, 57 (1930)

    Article  ADS  Google Scholar 

  26. A. Niehaus, J. Phys. B 19, 2925 (1986)

    Article  ADS  Google Scholar 

  27. E. Everhart, G. Stone, R.J. Carbone, Phys. Rev. 99, 1287 (1955)

    Article  ADS  Google Scholar 

  28. N. Bohr, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 18, 8 (1948)

    Google Scholar 

  29. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, Florida, 2003); Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions

  30. A. Barany, G. Astner, H. Cederquist, H. Danared, S. Huldt, P. Hvelplund, A. Johnson, H. Knudsen, L. Liljeby, K.G. Rensfelt, Nucl. Instrum. Methods Phys. Res. Sec. B 9, 397 (1985)

    Article  ADS  Google Scholar 

  31. A.E. Wetmore, R.E. Olson, Phys. Rev. A 34, 2822 (1986)

    Article  ADS  Google Scholar 

  32. K. Rinn, F. Melchert, K. Rink, E. Salzborn, J. Phys. B: At. Mol. Phys. 19, 3717 (1986)

    Article  ADS  Google Scholar 

  33. R.E. Olson, J. Phys. B: At. Mol. Phys. 11, L227 (1978)

    Article  ADS  Google Scholar 

  34. H. Berg, J. Ullrich, E. Bernstein, M. Unverzagt, L. Spielberget, J. Euler, D. Schardt, O. Jagutzki, H. Schmidt-Bocking, R. Mann, P.H. Mokler, S. Hagmann, P.D. Fainstein, J. Phys. B: At. Mol. Opt. Phys. 25, 3655 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiong Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Zhang, N., Zhu, B. et al. Single and double over-barrier ionization of He, He+ and Ne system by positron impact. Eur. Phys. J. D 71, 170 (2017). https://doi.org/10.1140/epjd/e2017-70500-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70500-9

Keywords

Navigation