Skip to main content
Log in

Production of excited hydrogen molecule in a two-frequency chirped laser field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have studied the population transfer in a 1+1 ladder system from v = 0, j = 0 of X 1 Σ g + state to J 1 Δ g +(v = 2, j = 2) state using two frequency-chirped laser pulses and thus to create excited hydrogen molecule. The first chirped frequency connects the ground level with two nonadiabatically coupled (i.e. dressed) intermediate levels, B 1 Σ u +(v = 14, j = 1) and C 1 Π u (v = 3, j = 1), while the second chirped pulse excites the intermediate levels to the final target level. Here both the chirped fields produce adiabatic crossings due to the chirping actions and facilitate the population transfer to the higher levels. We reported complete population transfer to the highly excited bound electronic level J 1 Δ g +(v = 2, j = 2) using appropriate laser parameters of the two chirped laser pulses for all combinations of negatively and positively chirped fields. We explained the population transfer by drawing adiabatic dressed states including nonadiabatic interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Brumer, M. Shapiro, Annu. Rev. Phys. Chem. 43, 257 (1992)

    Article  ADS  Google Scholar 

  2. M. Oberst, H. Münch, T. Halfmann, Phys. Rev. Lett. 99, 173001 (2007)

    Article  ADS  Google Scholar 

  3. M. Oberst, H. Münch, G. Grigoryan, T. Halfmann, Phys. Rev. A 78, 033409 (2008)

    Article  ADS  Google Scholar 

  4. S. Masuda, S.A. Rice, J. Phys. Chem. C 119, 14513 (2015)

    Article  Google Scholar 

  5. S. Masuda, S.A. Rice, J. Chem. Phys. 142, 244303 (2015)

    Article  ADS  Google Scholar 

  6. C.E. Carroll, F.T. Hioe, Phys. Rev. Lett. 68, 3523 (1992)

    Article  ADS  Google Scholar 

  7. S. Schiemann, A. Kuhn, S. Steuerwald, K. Bergmann, Phys. Rev. Lett. 71, 3637 (1993)

    Article  ADS  Google Scholar 

  8. V. Patel, S. Malinovskaya, Phys. Rev. A 83, 013413 (2011)

    Article  ADS  Google Scholar 

  9. S.A. Malinovskaya, Phys. Rev. A 73, 033416 (2006)

    Article  ADS  Google Scholar 

  10. V.S. Malinovsky, J.L. Krause, Phys. Rev. A 63, 043415 (2001)

    Article  ADS  Google Scholar 

  11. B.Y. Chang, I.R. Sola, V.S. Malinovsky, J. Santamaria, J. Chem. Phys. 113, 4901 (2000)

    Article  ADS  Google Scholar 

  12. A. Datta, S.S. Bhattacharyya, Bongsoo Kim, Phys. Rev. A 65, 043404 (2002)

    Article  ADS  Google Scholar 

  13. Y.B. Band, P.S. Julienne, J. Chem. Phys. 94, 5291 (1991)

    Article  ADS  Google Scholar 

  14. Y.B. Band, P.S. Julienne, J. Chem. Phys. 95, 5681 (1991)

    Article  ADS  Google Scholar 

  15. Y.B. Band, P.S. Julienne, J. Chem. Phys. 97, 9107 (1992)

    Article  ADS  Google Scholar 

  16. Y.B. Band, Phys. Rev. A 45, 6643 (1992)

    Article  ADS  Google Scholar 

  17. J.S. Melinger, A. Hariharan, S.R. Gandhi, W.S. Warren, J. Chem. Phys. 95, 2210 (1991)

    Article  ADS  Google Scholar 

  18. J.S. Melinger, S.R. Gandhi, A. Hariharan, J.X. Tull, W.S. Warren, Phys. Rev. Lett. 68, 2000 (1992)

    Article  ADS  Google Scholar 

  19. B. Boers, H.B. van Linden van den Hauvell, L.D. Noordam, Phys. Rev. Lett. 69, 2062 (1992)

    Article  ADS  Google Scholar 

  20. J.C. Davis, W.S. Waren, J. Chem. Phys. 110, 4229 (1999)

    Article  ADS  Google Scholar 

  21. S. Chelkowski, G.N. Gibson, Phys. Rev. A 52, R3417 (1995)

    Article  ADS  Google Scholar 

  22. S. Chelkowski, A.D. Bandrauk, J. Raman Spectrosc. 28, 459 (1997)

    Article  ADS  Google Scholar 

  23. K. Yamanouchi, G.G. Paulus, Deepak Mathur – Progress in Ultrafast Intense Laser Science: Volume X-Technology & Engineering, Springer Series in Chemical Physics 106, (2013)

  24. P.S. Julienne, Mol. Phys. 48, 508 (1973)

    Google Scholar 

  25. A.L. Ford, J. Mol. Spectrosc. 53, 364 (1974)

    Article  ADS  Google Scholar 

  26. A. Datta, S. Saha, S.S. Bhattacharyya, Phys. Rev. A 60, 1324 (1999)

    Article  ADS  Google Scholar 

  27. A. Datta, S.S. Bhattacharyya, Phys. Rev. A 63, 023410 (2001)

    Article  ADS  Google Scholar 

  28. M. Protopapas, P.L. Knight, J. Phys. B 28, 4459 (1995)

    Article  ADS  Google Scholar 

  29. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran (Cambridge University, Cambridge, England, 1992), p. 70

  30. L. Wolniewicz, K. Dressler, J. Chem. Phys. 88, 3861 (1988)

    Article  ADS  Google Scholar 

  31. L. Wolniewicz, K. Dressler, J. Chem. Phys. 85, 2821 (1986)

    Article  ADS  Google Scholar 

  32. L. Wolniewicz, K. Dressler, J. Chem. Phys. 82, 3292 (1984)

    Article  ADS  Google Scholar 

  33. L. Wolniewicz, J. Mol. Spectrosc. 169, 329 (1995)

    Article  ADS  Google Scholar 

  34. L. Wolniewicz, J. Mol. Spectrosc. 174, 132 (1995)

    Article  ADS  Google Scholar 

  35. W. Kolos, K. Szalewicz, H.Z. Monkhorst, J. Chem. Phys. 84, 3278 (1986)

    Article  ADS  Google Scholar 

  36. W. Kolos, L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964)

    Article  ADS  Google Scholar 

  37. A.L. Ford, A.M. Greenwalt, J.C. Browne, J. Chem. Phys. 67, 983 (1977)

    Article  ADS  Google Scholar 

  38. K. Dressler, L. Wolniewicz, Can. J. Phys. 62, 1706 (1984)

    Article  ADS  Google Scholar 

  39. J.W. Cooley, Math. Comput. 15, 363 (1961)

    Google Scholar 

  40. L. Wolniewicz, J. Chem. Phys. 51, 5002 (1969)

    Article  ADS  Google Scholar 

  41. L. Wolniewicz, J. Mol. Spectrosc. 180, 398 (1996)

    Article  ADS  Google Scholar 

  42. A. Natan, U. Lev, V.S. Prabhudesai, B.D. Bruner, D. Strasser, D. Schwalm, I. Ben-Itzhak, O. Heber, D. Zajfman, Y. Silberberg, Phys. Rev. A 86, 043418 (2012)

    Article  ADS  Google Scholar 

  43. V.S. Prabhudesai, U. Lev, A. Natan, B.D. Bruner, A. Diner, O. Heber, D. Strasser, D. Schwalm, I. Ben-Itzhak, J.J. Hua, B.D. Esry, Y. Silberberg, D. Zajfman, Phys. Rev. A 81, 023401 (2010)

    Article  ADS  Google Scholar 

  44. A. Csehi, G.J. Halász, L.S. Cederbaum, Á. Vibók, J. Chem. Phys. 143, 014305 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A. Production of excited hydrogen molecule in a two-frequency chirped laser field. Eur. Phys. J. D 71, 29 (2017). https://doi.org/10.1140/epjd/e2016-70590-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70590-9

Keywords

Navigation