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Abstract. A simple potential model of a rigid sphere combined with an adiabatic dipole polarization (∼r−4)
is tested for positron-atom and positron-molecule elastic collisions. The numerical model, which is based
on the analytical solution of radial Schrödinger equation for r−4 potential, depends solely upon the average
dipole polarizability of the target and one adjustable parameter – the radius of a hard core. The validity
of model is assessed by an extensive comparative study against numerous experimental cross-sections and
theoretical phase-shifts of angular momentum partial waves for positrons scattered elastically by He, Ne,
Ar, Kr, Xe, H2, N2 and CH4. In particular it is shown that this very simple approach can be used to model
positron elastic collisions with targets characterized by moderate dipole polarizabilities (Ar, Kr, H2, N2) in
good agreement with experiments for impact energies covering almost entire range from the positronium
formation threshold down to the zero energy.

1 Introduction

The recent progress in experimental studies on low-energy
positron scattering by noble gases greatly improved our
understanding of positron binary interactions with atomic
targets for impact energies below the positronium forma-
tion threshold (see review papers [1,2]). In particular, the
energy dependencies of integral elastic scattering cross-
sections for helium (He) and neon (Ne) were confirmed
to be characterized by valley-like shapes, which are sim-
ilar to narrow Ramsauer-Townsend minima observed in
electron scattering from heavier noble gasses: argon (Ar),
krypton (Kr) and xenon (Xe). On the other hand the
scattering cross-sections for positron collisions with the
last three atoms exhibit completely different shapes when
compared to He and Ne: the steep decrease of magni-
tude with increasing energy ended by almost flat (virtu-
ally independent of energy) part just below the positron-
ium formation threshold. Interestingly, the similar shapes
have been also found for small nonpolar molecular targets
such as hydrogen (H2), nitrogen (N2) and methane (CH4)
(see recent papers [3–5] and references therein). These
similarities indicate that interaction potentials between
positron and different targets are characterized by some
target-independent features. In addition, Karwasz [7–9]
noticed that averaged magnitudes of “flat” part of scat-
tering cross-sections scale in a similar way as atomic and
molecular dimensions. This effect is similar to classical
elastic scattering on hard sphere. Recently, in more de-
tailed study [10] we showed that the atomic radii de-
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termined from positron scattering data using a classical
rigid sphere model are comparable to covalent radii of
atoms. However this simple picture does not translate di-
rectly into the quantum mechanics since pure quantum-
mechanical hard-sphere model is not applicable to low-
energy positron scattering [11].

From a theoretical point of view the scattering of
low-energy small charged particles (such as electron and
positron) from atoms and molecules in a gas phase is a
very attractive research field allowing for validation of
different quantum scattering models. On one hand, many
theoretical models were proved to be able to describe a del-
icate counterbalance between attractive short-range static
– polarization and repulsive exchange interactions present
in low-energy electron elastic scattering. On the other
hand, the theoretical description of positron elastic colli-
sions was found to be much more challenging, particularly
for ab initio procedures, despite the fact that no exchange
interaction is present (for example see Ref. [6] and refer-
ences therein). For positrons the repulsive static potential
is counterbalanced solely by an attractive polarization po-
tential making computational approaches very sensitive
to the short-range positron – target’s electrons (nonadi-
abatic) correlations. High quality (but computationally
expensive) models have been developed to challenge this
problem including, for example, approximate density func-
tional theory (DFT) by Gianturco et al. [12], polarized-
orbital calculations by McEachran and Stauffer [13] and
McEachran et al. [14–18], many-body theory with virtual
positronium formation by Green et al. [19], convergent
close-coupling (CCC) method by Fursa and Bray [20]
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and semi-empirical potential model for ab initio calcu-
lations by Assafrão et al. [21] and Poveda et al. [22].
All these approaches were able to successfully reproduce
shapes and magnitudes of experimental elastic scattering
cross-sections for most noble gases, though they are not
fully consistent, particularly in the prediction of scatter-
ing lengths. For molecular targets the situation is less op-
timistic since different diverging results were published for
the same molecules. This is also true for the simplest tar-
get, H2 (see Ref. [3] and references therein).

Given these difficulties related to ab initio approaches,
the semiempirical models gain in value since they have
potential to capture main properties of positron interac-
tion with atomic and molecular targets with relatively
small computational costs. Schrader [23] suggested that
the most important feature of any semiempirical model for
positron-atom elastic collisions is to have a correct long-
range behavior, that is an adiabatic polarization potential
proportional to r−4. Using this potential, one can propose
any approach with few disposable parameters to approx-
imate unknown short-range nonadiabatic correlation in-
teraction. In particular Schrader [23] proposed a simple
model with only one adjustable parameter. More recently,
in a series of papers [24–29] we showed that the low-energy
electron and positron scattering by noble gases and simple
non-polar molecules (such as H2, CH4) can be very well
modeled using well-known modified effective range theory
(MERT). In MERT the scattering problem is solved ana-
lytically considering the target as single object interacting
with the incoming projectile through the long-range dipole
polarization potential (∼r−4). The contribution of short-
range many body interactions is included within the frame
of this model as an energy-dependent term. This term is
described by four to six parameters that are empirically
found by comparison with experiment.

In this work, combining the idea of Karwasz [7,8] that
positrons probe atomic dimensions as in classical collisions
with hard spheres and the statement of Schrader [23] that
any semiempirical approach with correct long range poten-
tial works for positron scattering, we propose the model
of rigid sphere combined with long-range adiabatic dipole
polarization (∼r−4) (see Fig. 1). Though such potential
does not reproduce the full behavior of positron-target
interaction, we show that this model is a good approxi-
mation to describe the elastic scattering cross-sections for
positron collisions with noble gases and small non-polar
molecules (H2, N2 and CH4) over wide energy ranges. In
particular the model is found to work well for targets with
moderate polarizabilities where no Ramsauer-Townsend
minimum is observed in integral cross-sections. Similar to
the model of Schrader [23], the present approach requires
only one adjustable parameter – the radius of rigid sphere.
The latter is found to be compatible with the position of
principal maximum in the radial distribution of outermost
orbital (defined here as the atomic radius) for atomic tar-
gets. Providing the present model we benefit also from
the fact that the de Broglie wavelength of positron with
kinetic energy below the positronium formation thresh-
old is usually comparable or much greater than the di-
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Fig. 1. Presently tested potential model shown for e+− Ar
collision. For comparison the potential energies used by Poveda
et al. [22] and Franz et al. [10] are also presented.

mensions of small atoms and molecules. In such a case
the interaction of low-energy charged particle with atomic
and molecular targets tends to be governed by asymptotic
long-range potentials and so, it is less sensitive to the de-
tails of target’s internal structure, except cases when the
resonance phenomena are present.

2 Theoretical model

We consider the following radial Schrödinger equation de-
scribing the relative motion of a charged particle and a
non-polar spherical target (in atomic units):

[
d2

dr2
− l(l + 1)

r2
− V (r) + k2

]
Ψl(r) = 0, (1)

where

V (r) =

{∞, r < R0

−α/r4, r > R0

(2)

with R0 denoting the radius of rigid sphere and α being the
static dipole polarizability. Here Ψl(r) denotes the radial
wave function for the partial wave l and k is the particle
wavenumber.

The Schrödinger equation for the potential V (r) and
partial-wave quantum number l can be solved exactly:

Ψl(r) =

{
0, r < R0

Cl
√

rMvl
(z) +

√
rTvl

(z), r > R0

(3)

where z = ln (
√

R/
√

kr) with R =
√

αe2μ/�2 being the
characteristic distance – a typical length scale related to
the r−4 interaction. Here e is the elementary charge, μ is
the reduced mass of positron – target system and � is the
Planck constant. Functions Mvl

(z) and Tvl
(z) are the two
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linearly independent solutions for r−4 potential, so-called
Mathieu functions [24]:

Mvl
(z) =

n=+∞∑
n=−∞

(−1)ncnJ2n+vl

(
2
√

kR cosh z
)

, (4)

Tvl
(z) =

n=+∞∑
n=−∞

(−1)ncnY2n+vl

(
2
√

kR cosh z
)

, (5)

where J(x) and Y (x) are ordinary Bessel and Neumann
functions. Coefficients vl(k) (Mathieu characteristic expo-
nent) and cn(k) can be determined numerically from an-
alytical properties of Mathieu functions, see appendices
of references [24,25] where numerical procedures are de-
scribed in details. Energy – dependent parameter Cl(k) in
equation (3) is determined from the continuity conditions
for Ψl(r) at r = R0.

The asymptotic formulas for Mvl
(z) and Tvl

(z) for
large and negative argument z (large r) are following [24]

Mvl
(z) z→−∞−−−−−→

√
2
π

ez/2

(kR)1/4
mlsvl

× cos
(√

kRe−z +
π

2
vl − π

4

)
, (6)

Tvl
(z) z→−∞−−−−−→

√
2
π

ez/2

(kR)1/4

svl

ml

×
[

sin
(√

kRe−z +
π

2
vl − π

4

)

− (m2
l − 1) cot(πvl) cos

(√
kRe−z+

π

2
vl− π

4

) ]
,

(7)

where ml(k) = limz→0+ Mvl
(z)/M−vl

(z) and svl
(k) =∑∞

n=−∞ cn(k).
Comparing asymptotic expression of present wavefunc-

tion with the standard asymptotic form of the scattered
radial wave function, Ψl

z→∞−−−→ Gl sin(kr − lπ/2)/kr −
Hl cos(kr − lπ/2)/kr one can easily derive an exact for-
mula for the scattering phase-shift of lth partial wave from
tan ηl = −Hl/Gl:

tan ηl =
sin δl − [Clm

2
l + cot(πvl)(m2

l − 1)] cos δl

cos δl + [Clm2
l + cot(πvl)(m2

l − 1)] sin δl
, (8)

where δl = 2vl/π + l + 1/2.
The exact formula can be used to calculate ηl for all

partial waves, however in order to speed up the computa-
tions one can use a simpler expression

tan ηl ≈ παk2

8(l − 1/2)(l + 1/2)(l + 3/2)
, for l > 6 (9)

because the difference between the latter formula and the
exact results is insignificant for high l for all considered
targets.

The integral elastic scattering cross-section is calcu-
lated from standard partial wave expansion:

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 ηl(k). (10)

The only adjustable parameter in present model is R0, the
radius of the rigid sphere. In addition, the value of dipole
polarizability (α) is needed but this quantity is generally
well known for all studied targets because it has been de-
termined accurately by different experimental and theo-
retical methods [30]. Moreover it was found that present
calculations are very weakly sensitive to small changes
of α. On the contrary the model is very sensitive to the
changes of hard sphere radius.

3 Results

The geometrical parameter R0 has been optimized with
trial and error method to obtain as good agreement as pos-
sible with experimental total cross-sections (σ) and cho-
sen theoretical scattering phase-shifts (ηl). The standard
values of static dipole polarizabilities were used [30]. All
values of R0 and α used in present calculations are listed
in Table 1. For most targets the results of calculations for
two or three different values of R0 are given in order to
illustrate how the output of present calculations changes
with the size of rigid sphere.

For comparison purposes, Table 1 contains also the po-
sitions of principal maxima in the radial distributions of
outermost orbitals for atomic targets as given by differ-
ent sources [31–34]. Additionally, some estimates of sizes
for molecular targets are also included in Table 1. For
atoms, it is clear that values of R0 used in present model
are compatible with atomic radii defined in this way or
at least they corresponds to typical radial positions of
valence shells. In more details, for He and Ar, presently
used hard core sizes match perfectly atomic radii reported
in the literature. For Kr, R0 value falls in between posi-
tions of maxima of two occupied valence orbitals (4s and
4p) as reported by Mann [34] (and similarly by Waber
et al. [31]): R4s = 1.37a0 and R4p = 1.56a0. For Xe, the
rigid sphere radii are closer to R5s = 1.71a0 of 5s orbital
rather than the outermost one, 5p: R5p = 1.94a0 as re-
ported by Mann [34]. In the case of Ne, unlike for other
atoms, the good agreement with scattering data was found
using R0 that is slightly higher than atomic radii given in
all cited literature. Note however that above comparison
has only a tentative character due to ambiguous definition
of atomic radius in quantum physics. Nevertheless a rel-
atively good correspondence between presently used rigid
sphere radii and the literature data for atomic sizes con-
firms that the distortion of valence electrons cloud plays
the most important role in the positron-atom collisions,
whereas the interaction with inner-shell electrons is hin-
dered by a strong repulsion with nucleus (the positron
does not penetrate far inside the atom).

It is more difficult to define equivalent “molecular”
radii for H2, N2 and CH4 due to the lack of typical spher-
ical symetry, though it has been proved [24–29] that ap-
proximation of spherical dipole polarizability is sufficient
to describe low-energy positron (or electron) scattering by
these molecules. In Table 1 we give different theoretical es-
timates of molecular sizes in order to show that values of
R0 used in present model are compatible with a typical
molecular length-scale. Usually, the sizes of homonuclear

http://www.epj.org


Page 4 of 11 Eur. Phys. J. D (2016) 70: 261

Table 1. Static dipole polarizabilities (α) and radii of rigid sphere (R0) used in present calculations. For some targets more
than one value of radius is used. For comparison the atomic radii defined as the principal maxima in the radial distributions of
outermost orbitals and some theoretical estimates of molecular sizes are also given.

Atoms Atomic radius (a0)

Target α(a3
0) R0(a0) Waber and Cromer [31] Fraga et al. [32] Ghosh and Biswas [33] Mann [34]

He 1.383 0.5762 0.588 0.6092 0.55 0.57 0.59 0.57

Ne 2.671 0.8498 0.67 0.70 0.68 0.68

Ar 11.23 1.3287 1.24 1.27 1.33 1.30

Kr 16.86 1.4751 1.4977 1.50 1.61 1.79 1.56

Xe 27.29 1.687 1.7239 1.86 1.89 2.42 1.94

Molecules Molecular sizes (a0)

Target α(a3
0) R0(a0) Promolecule radii [35] Covalent radii

H2 5.314 0.9221 0.9509 0.9912 1.04 ± 0.38 0.59 [36]; 0.70 [37]

N2 11.54 1.2875 1.3249 1.4268 1.45 ± 0.25 1.02 [38]

CH4 16.52 1.4632 1.5445 Carbon bonding radius: 1.36a0–1.47a0 (see text for discussion)

molecules such as H2 and N2 are described in terms of
covalent radius, that is the half of bond length (internu-
clear distance). However, the H2 single-bond and the N2

triple-bond covalent radii are shorter than presently used
values of R0. An alternative definition of atomic radii in
molecular diatomic systems is provided by a model of pro-
molecule [35]. In this model the electron density distribu-
tions of each of atom in molecule is spherically averaged
and placed at their minimum energy positions. The pro-
molecule radius of diatomic homonuclear molecule is then
defined to be the distance between the nucleus of the atom
and the point of minimum electron density along the line
between the nuclei [35]. Such definition of “molecular ra-
dius” yields mean results [35] which are more compatible
with the sizes of hard spheres used in present model.

In heteronuclear CH4 molecule the C-H internuclear
separation (sp3 hybridisation) is around 2.06a0 [39]. Con-
sidering the single-bond covalent radius of hydrogen to
be between 0.59a0 [36] and 0.7a0 [37], the bonding ra-
dius of carbon atom in CH4 molecule falls in between
1.36a0 and 1.47a0. The latter values are comparable with
present rigid sphere radii and with some estimates of car-
bon single-bond (C−C) covalent radius [36]. This coinci-
dence may suggest that positron interacts rather with the
carbon than hydrogen during the collision with methane
molecule.

Please note that in order to avoid an overload of
data presented in figures, in the following subsections the
present calculations are compared only with selectively
chosen experimental and theoretical results. Detailed com-
parison of high quality theories and experiments not in-
cluded in the present work can be easily found elsewhere
(for example see Ref. [2] and references therein).

3.1 Helium

Figure 2 shows a comparison of present calculations us-
ing three different values of R0 with chosen experimental
total cross-sections (TCS) and theoretical integral elastic
cross-sections for positron collisions with helium. It is ex-
pected that the present model should be only a very rough
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Fig. 2. Elastic scattering cross section for helium. Present
calculations for three different rigid sphere radii (R0) are
compared with chosen theoretical and experimental results.
Theories: polarized orbital by McEachran et al. [14,15] and
many-body theory by Green et al. [19]. Experiments: Stein
et al. [40], Mizogawa et al. [41], Karwasz et al. [42–45], Sullivan
et al. [46], Jay and Coleman [47], Nagumo et al. [48,49] and
Fayer et al. [50].

approximation for description of e+− He collisions since
the dipole polarizability of this target is too weak to ap-
proximate a correlation of two electrons with one positron
by a simple adiabatic polarization potential. Moreover the
static repulsion is probably not sufficiently strong to model
it by infinite potential barrier at short range. Neverthe-
less the present approach with R0 = 0.5762a0 is in quite
good agreement (except the resonance structures) with
experimental data by Karwasz et al. [51] at the low en-
ergy side and with data by Nagumo et al. [48,49] mea-
sured in magnetic field-free conditions at the high en-
ergy side. The latter dataset is supposed to be practically
free from forward angle scattering error – the effect that
tends to underestimate measured total cross-sections in
attenuation-type experiments [52]. This can possibly ex-
plain why the TCS by Nagumo are higher than other data
measured in presence of magnetic field in the scattering
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region. However the latest experiment by Fayer et al. [50]
with another magnetic field-free system does not confirm
the results of Nagumo et al. [48,49].

As shown in Figure 2 the increase of rigid sphere radius
to R0 = 0.5880a0 yields results that follows very closely
polarized orbital calculations by McEachran et al. [14,15]
in low energy region (<1 eV). Further increase of R0 to
0.6092a0 improves the agreement with experimental TCSs
obtained by most experimental groups at very low energies
(<1 eV) while significantly enlarge the divergence between
the model and experiments at higher energies. Notewor-
thy is the fact that the use of latter radius allows to repro-
duce (not exactly but with high degree of agreement) at
low energies many-body theory by Green et al. [19]. Actu-
ally, we checked that it is possible to get good agreement
at low energies (<1 eV) with other theories, for example
with close coupling calculations (CCC) by Wu et al. [53]
(not shown in Fig. 2), by adjusting the radius of hard
sphere in present model. It looks like a small shift in the
position of the infinitive barrier yields similar effects (at
least at very low energies) as using different theoretical ap-
proaches aiming to approximate nonadiabatic short-range
correlation between positron and target’s electrons. The
similar observation holds also for other atomic and molec-
ular targets.

3.2 Neon

Figure 3a shows the results of present calculations of elas-
tic scattering cross-sections for positron collisions with
neon. The good agreement with experimental data was
found for R0 ≈ 0.85a0. At low impact energies, E < 3 eV,
present model agrees pretty well with available experi-
mental TCSs. On the other hand, at higher energies it
closely follows only the dataset by Nagumo et al. [56] mea-
sured in magnetic field-free conditions. The latter TCS, as
for helium, is higher in magnitude than other measure-
ments. The presently calculated scattering phase-shifts
shown in Figure 3b for s-, p- and d-partial waves resemble
in shapes the results published by McEachran et al. [16]
and Green et al. [19]. The important difference in mag-
nitude appears only at higher energies, E > 3 eV, where
the present model gives stronger negative s-wave and pos-
itive p-wave phase-shifts. This is reflected in higher inte-
gral cross-sections at higher energies when compared to
both reference models, though the disagreement is much
lower than for helium. Moreover, as for helium, we checked
that it is possible to adjust R0 in a way allowing to get
much better agreement with polarized orbital [13–18] and
many-body calculations [19] below 1 eV.

3.3 Argon

Figure 4a shows the results of present calculations (with
R0 = 1.3287a0) of elastic scattering cross-sections for
positron collision with argon. The hard core radius has
been chosen to give cross-section curve laying in between
theoretical results by McEachran et al. [17] and Green
et al. [19] in low energy limit. Note also (see Tab. 1) that
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Fig. 3. (a) Elastic scattering cross section for neon. Present
calculations are compared with chosen theoretical and ex-
perimental results. Theories: polarized orbital by McEachran
et al. [16] and many-body theory by Green et al. [19]. Ex-
periments: Stein et al. [40], Sinapius et al. [54], Jay and
Coleman [47], Jones et al. [55], Nagumo et al. [56]. (b) Present
s-, p- and d -wave scattering phase-shifts (ηl) compared with
McEachran et al. [16] (filled symbols) and Green et al. [19]
(empty symbols).

this radius is in very good agreement with the positions of
principal maximum in radial distribution of argon outer-
most orbital calculated by different groups. The agreement
with available experimental data has to be judged as ex-
cellent. Moreover present phase-shifts shown in Figure 4b
follow closely the results reported by both reference theo-
ries. Similar to helium and neon the differences in phase-
shift magnitudes between present model and both refer-
ence datasets appear only at higher energies, E > 6 eV,
where the present model gives slightly stronger negative
s-wave phase-shifts, but it does not translate into a signifi-
cant difference in elastic integral cross-sections as observed
for lighter atoms. Furthermore it is also possible to get
cross-sections that reproduce both models in almost entire
energy range below the positronium formation threshold
by slightly adjusting R0 (the changes are of the order of
hundredths of the Bohr radius when compared to value
quoted above).
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3.4 Krypton

Figure 5 shows the results of present calculations of elas-
tic scattering cross-sections and corresponding scatter-
ing phase-shifts for positron collision with krypton us-
ing two values of rigid sphere radius: R0 = 1.4751a0 and
R0 = 1.4977a0. The smaller value yields cross-setcions
that are compatible with the most recent experimental re-
sults by Zecca et al. [60], particularly at low energies. The
higher value of R0 give results (cross-sections and phase-
shifts) being in good agreement with polarized-orbital [18]
and many-body theory [19].

3.5 Xenon

The present calculations for xenon are shown in Figure 6.
Since there are noticeable discrepancies between experi-
mental TCSs and even more significant in theoretical mod-
els, here we present the results for two radii of rigid sphere,
R0 = 1.7239a0 and R0 = 1.687a0.
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Fig. 5. Elastic scattering cross section for krypton. Present
calculations for two different rigid sphere radii (R0) are com-
pared with chosen theoretical and experimental results. Theo-
ries: polarized orbital by McEachran et al. [18] and many-body
theory by Green et al. [19]. Experiments: Dababneh et al. [59],
Sinapius et al. [54], Zecca et al. [60] and Makochekanwa
et al. [61]. (b) Present s-, p- and d -wave scattering phase-shifts
(ηl) compared with McEachran et al. [18] (filled symbols) and
Green et al. [19] (empty symbols).

Both calculations agree with experimental data at the
same level of accuracy as more advance theoretical results.
Interestingly, the longer radius gives cross-sections com-
patible with polarized-orbital calculations by McEachran
et al. [18] in almost entire considered energy range. The
use of lower radius, R0 = 1.687a0, gives results that fol-
lows very closely CCC calculations by Fursa and Bray [20]
at very low impact energies from 0 eV up to 0.5 eV.
The many-body theory by Green et al. [19] can be also
reproduced at very low energies using R0 = 1.6962a0

(not shown in Fig. 6). At higher enrgies, just below
the positronium formation threshold, both latter theories
yields cross-sections that are much higher than all avail-
able experimental data.

3.6 Molecular targets

For molecular targets, in addition to spherical part
of dipole polarizability, one should take into account
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Fig. 6. Elastic scattering cross section for xenon. Present cal-
culations for two different rigid sphere radii (R0) are compared
with chosen theoretical and experimental results. Theories: po-
larized orbital by McEachran et al. [18], many-body theory
by Green et al. [19] and convergent close-coupling method
by Fursa and Bray [20]. Experiments: Dababneh et al. [59],
Sinapius et al. [54], Machacek et al. [62], and Zecca et al. [63].
(b) Present s-, p- and d -wave scattering phase-shifts (ηl) com-
pared with McEachran et al. [18] (filled symbols) and Green
et al. [19] (empty symbols).

non-spherical dipole and quadrupole polarizabilities in
long-range polarization potential. Here we neglect these
contributions. Note also that inelastic scattering pro-
cesses such as rotational and vibrational excitations can
contribute to experimental total scattering cross-sections
measured below the positronium formation thresholds.

Figure 7a shows present calculations of elastic cross-
sections for molecular hydrogen (H2) using three different
values of rigid sphere radius: R0 = 0.9221a0, R0 =
0.9509a0 and R0 = 0.9912a0. Present results are compared
with three the most recent experimental TCSs [51,73,74]
and selectively chosen recent theoretical data. Calcula-
tions with the smallest R0 yield elastic cross-sections,
which agree pretty well with experimental TCS mea-
sured by ANU group [74]. The agreement is particularly
good above 2 eV, at the “flat” part of cross-sections,
just below positronium formation threshold. To best

Fig. 7. Elastic scattering cross section for molecular hydro-
gen (H2), nitrogen (N2) and methane (CH4). Present calcula-
tions for different rigid sphere radii (R0) are compared with
chosen theoretical and experimental results. Theories for H2:
Mukherjee and Sarkar [64], Zhang et al. [65], Zammit et al. [66]
and Fedus et al. [3]; theories for N2: Elza et al. [67], Carvalho
et al. [68], Tenfen et al. [69], Mukherjee and Mukherjee [70]
and Franz et al. [10]; theories for CH4: Jain and Gianturco [71],
Zecca et al. [72] and Franz et al. [10]. Experiments for H2: Fedus
et al. [3], Karwasz et al. [51], Zecca et al. [73] and Machacek
et al. [74]; experiments for N2: Hoffman et al. [75], Sueoka and
Hamada [76], Karwasz et al. [51] and Zecca et al. [77]; ex-
periments for CH4: Floeder et al. [78], Sueoka and Mori [79],
Dababneh et al. [80] and Zecca et al. [72].
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of our knowledge, so far no theoretical approach was able
to reproduce this part of ANU TCS, which is the highest
among available experimental datasets. However at lower
energies, E < 2 eV, the smallest R0 yields results that
are higher than other experiments and theories. On the
other hand, the use of the second value of R0 = 0.9505a0

gives cross-sections that are consistent with ro-vibrational
laboratory-frame close coupling method by Mukherjee and
Sarkar [64], CCC method of Zammit et al. [66] and den-
sity functional calculations (DFT) by Fedus et al. [3] be-
low 2 eV, giving the value of the scattering length (see
next subsection) comparable with prediction of Zhang
et al. [81], Zhang and Mitroy [82], Zhang et al. [83]
obtain with stochastic variational method. Above 2 eV
presently calculated cross-sections agree pretty well with
other experiments.

The results obtained with the largest value of R0 =
0.9912a0 is included in Figure 7a mainly to show that it
is possible to get results that are consistent at very low
impact energies (<0.4 eV) with TCS by Zecca et al. [73],
though this experimental dataset seems to be significantly
underestimated at low energies as discussed by Zhang and
Mitroy [81].

Figure 7b shows present calculations of elastic cross-
sections for molecular nitrogen (N2) using three differ-
ent values of rigid sphere radius: R0 = 1.2875a0, R0 =
1.3249a0 and R0 = 1.4268a0. The use of the smallest
R0 yields cross-sections consistent with ab initio calcula-
tions of Tenfen et al. [69] and DFT results obtained using
Boronski-Nieminen functional by Franz et al. [10], while
intermediate R0 gives better agreement with experimen-
tal data by Zecca et al. [77] at low energies (<1 eV) and
Karwasz et al. [51] at higher energies. On the other hand,
the highest value of R0 provides results that agree with old
experimental data by Sueoka and Hamada [76] and with
Schwinger multichannel calculation by Carvalho et al. [68]
reproducing this experimental TCS.

Figure 7c shows calculations of elastic cross-sections
for methane (CH4) using two different values of rigid
sphere radius: R0 = 1.4632a0 and R0 = 1.5445a0. The
use of smaller R0 yields cross-sections consistent with
DFT results using Boronski-Nieminen functional by Franz
et al. [10], while larger R0 gives better agreement with
old experimental datasets by Sueoka and Mori [79] and
Dababneh et al. [80]. On the other hand it is impossible
with present approach to find R0 allowing to reproduce
TCS by Zecca et al. [72]. Interestingly, a slight decrease
of larger R0 value allows to follow very closely, at low en-
ergies (<1 eV), the Schwinger multichannel calculations
(SMC) reported in the same paper of Zecca et al. [72].

3.7 Scattering lengths

The s-wave scattering length for tested potential model is
given analytically (in atomic units) [84]:

lsc =
√

α cot
(√

αR−1
0

)
. (11)

This analytical expression has been used to verify the cor-
rectness of present numerical model. The calculations of
cross-sections were performed close to 0 eV (from 0.00001

to 0.000001 eV) where the energy-dependence becomes
flat. This flat cross-section value was taken as cross-section
at 0 eV to estimate the scattering length using relation
σ = 4πl2sc. Both analytical (Eq. (11)) and numerical re-
sults are in perfect agreement.

Scattering lengths for all studied targets corresponding
to different values of R0 (see Tab. 1) are shown in Table 2
where they are compared with other determinations. Note
that the increase of rigid sphere radius is accompanied by
a decrease in the absolute value of the scattering length
for all targets. From He to Kr different literature data for
scattering lengths are quite consistent with each other and
presently derived lsc are also comparable with them. Gen-
erally, we checked that it is often possible to adjust R0 in
such a way in order to get good agreement at low energies
with cross-sectional results of most available theories and
so to reproduce their estimations of lsc.

On the contrary to lighter atoms, there are signifi-
cant discrepancies in value of lsc reported for Xe. For ex-
ample, polarized orbital calculations by McEachran and
Stauffer [13] and McEachran et al. [14–18], many-body
theory by Green et al. [19] and CCC results of Fursa and
Bray [20] predict completely different values. This refletcs
a high sensitivity of scattering calculations in the low-
energy region for xenon to the representation of the short-
range correlation potential [19]. Nevertheless, as describe
in Section 3.5, using present approach it is possible to get
results compatible with all these three theories at very
low (near-to-zero) impact energies (in the case of polar-
ized orbital calculations [13–18] even in the entire energy
range below positronium formation threshold) by slightly
adjusting the size of hard sphere.

For hydrogen, the present approach with R0 ≈ 0.95a0

gives values of lsc that are compatible with literature
data. In particular the model is consistent with the predic-
tions by Zhang et al. [81], Zhang and Mitroy [82], Zhang
et al. [83] while preserving at the same time very good
agreement with experimental cross-sections at higher en-
ergies. The lsc values of Zhang et al. have to be considered
as the most reliable at this moment since their stochastic
variational approach was able to resolve a long-standing
discrepancy between theoretical and experimental cross
sections for positron annihilation with the H2 molecule
(see Ref. [81] for more details). For other two molecules,
N2 and CH4, there are much less reported values of scat-
tering lengths, so the comparison is not so informative.
Noteworthy is the fact that our simple model is compat-
ible with cross-sections calculated by some other theories
at low energies (<1 eV) (see Fig. 7). So the present ap-
proach applied with proper rigid sphere radii should yield
similar scattering lengths as those theories.

4 Discussion and conclusions

This work shows that very simple toy-model of interaction
potential: a rigid sphere combined with an adiabatic dipole
polarization (∼r−4), can be used to describe positron
elastic scattering by noble gases over relatively wide
energy ranges below the positronium formation thresh-
old. In this way we proved an old statement formulated
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Table 2. Positron scattering lengths lsc in atomic units for noble-gas atoms, molecular hydrogen, nitrogen and methane. The
order appearance of scattering lengths in column 2 corresponds to the order of appearance of rigid sphere radii (R0) in column 3
of Table 1.

Target Present results for different R0 Other determinations
He −0.5976 −0.5382 −0.4421 −0.435 [19]; −0.53 [14,15]; −0.45 [21]
Ne −0.6010 −0.467 [19]; −0.61 [16]; −0.57 [21]; −0.53 [20]
Ar −4.6991 −4.41 [19]; −5.30 [17]; −5.05 [21]; −4.30 [20]; −4.9 ± 0.7 [58]
Kr −10.9757 −9.7120 −9.71 [19]; −10.4 [18]; −9.88[21]; −11.20 [20]; −10.3 ± 1.5 [60]
Xe −116.0581 −46.7572 −84.50 [19]; −45 [18]; −117 [20]; −99.2 ± 18.4 [63]
H2 −3.0856 −2.6424 −2.1686 −2.63 [81]; −2.71 [82]; −2.79 [83]; −2.49 [66]
N2 −6.1727 −5.2125 −3.5691 −2.65 [85]; −2.53 [68], −9.27 [24]

CH4 −10.6753 −7.2662 −13.0 [86]; −7.40 [72]; −5.65 to −8.50 [25]

by Schrader [23] saying that any semiempirical model with
disposable parameters can used to approximate positron –
atom short-range interactions if correct long-range behav-
ior is included. Present model needs only one adjustable
parameter – the radius of the rigid sphere, which is found
to be compatible with the positions of principal maxima in
the radial distribution of outermost atomic orbitals. The
requirement for only one adjustable parameter is an ad-
vantage when compare to modified effective range theory
(MERT) [25–29] where four to six empirical parameters
are needed in order to describe variations of elastic scat-
tering cross versus impact energy.

In more details, when compared with available exper-
imental and theoretical data for the lightest atom – he-
lium, the model agrees with majority of experiments and
theories only at very low impact energies (<1 eV). Prob-
ably the dipole polarizability of this target is too weak
to approximate a correlation of two electrons with one
positron by a simple adiabatic potential in the entire en-
ergy range below the threshold for first inelastic channel.
Nevertheless two experimental datasets for He, Karwasz
et al. [42–45] and Nagumo et al. [48,49], are quite consis-
tent with the present approach over wider energy ranges
for a certain value of rigid sphere radius. Interestingly, the
present model is also able to accurately reproduce some
of theories at very low impact energies (E < 1 eV) by ad-
justing the rigid sphere radius. This observation remains
valid for other atomic and molecular targets.

The agreement with experiments and more advance
calculations is better for neon in relatively wider energy
range than for helium, but once again present model still
seems to overestimate cross-sections at high energies. Nev-
ertheless further increase of polarizability significantly im-
proves the agreement with experiments and other theories
over wider energy ranges as it is proved for heavier atoms.
In particular the model constitutes a very good approxi-
mation for positron collisions with argon and krypton over
almost entire energy range below the positronium forma-
tion threshold. It looks like the model works also pretty
well for xenon which is characterized by the highest po-
larizability, though in this case the discrepancy between
different experiments and theories is larger than for other
atoms hindering accurate comparative analysis.

In addition the present work shows that the intro-
duced model has a potential to describe positron elastic
scattering by small molecular targets such as hydrogen,

nitrogen and methane. Due to high divergence of differ-
ent experimental and theoretical cross-sectional data for
these molecules it is difficult to judge the reliability of
present approximation. Nevertheless, as shown in this pa-
per, it is often possible to choose radius of rigid sphere
allowing to reproduce some literature data, particulraly
at low energies. Present model is especially promising for
describing elastic collisions with H2 and N2 in almost en-
tire energy range below the positronium channel. Note
that integral elastic scattering cross-sections for both lat-
ter molecules resemble in shapes data for Ar and Kr.

Many sophisticated theories show that the dipole term
alone (∼r−4) is not sufficient to describe long-range part
of the positron – atom interaction [1] in the entire en-
ergy range below the positronium formation threshold. For
example, many-body theory [19] requires an inclusion of
virtual positronium, convergent-close-coupling formalism
takes into account coupling effects to virtual positronium
formation channels [20], whereas polarized-orbital [13–18],
DFT [10,12] and model-potential [21,22] approaches need
higher multipole terms (quadrupole, octupole, hyperpolar-
izability) in long-range polarization in order to get good
agreement with experiments. The present results show
that the lack of attractive virtual effects, short-range cor-
relations and higher long-range multipoles can be effec-
tively compensated by very deep minimum of dipole po-
larization potential (for example −α/2R4

0 ≈ −49 eV for
Ar, see Fig. 1). In other words such strong dipole poten-
tial is necessary to mimic attractive part of interaction at
low impact energies, typically below 1 eV, when using the
model of infinitive barrier for static repulsion. Note that
for Ar and Kr (maybe for H2 and N2) this approximation
is valid almost up to the positronium formation.

Furthermore, this work shows that small changes in
the hard core radius allow to obatin good agreement of
present results with most different theories at low energies
(E < 1 eV). Saying it differently, the shift in the position
of infinite barrier gives the same effect as using completly
different representations of short-rage part of attractive
correlation potential for impact energies at which the long-
range polarization interaction (∼r−4) is clearly dominant.
This observation togehther with succesful applicability of
MERT analysis [3,24–29] to the low-energy positron scat-
tering suggests that contribution of short-range correla-
tions become less important with impact energy approach-
ing zero.
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Moreover, the present results show that the infinite
rectangular barrier approximates quite well the positron
– atom static repulsion in the low energy limit (E < 1 eV).
Interestingly, the values of the positron scattering lengths
for noble gas atoms in the static field approximation (i.e.,
with no polarization or other correlations included) are
0.421, 0.767, 1.346, 1.586 and 1.901 a0, for He to Xe, re-
spectively. These values were calculated using DFT ap-
proach as described in reference [10] with electron density
calculated on Hartree-Fock level including relativistic ef-
fects obtained with the Douglas-Kroll-Hess method. These
scattering lengths are compatible with the rigid sphere
radii found in this work (with the best agreement for Ar).

Finally, the author is perfectly aware of a limited va-
lidity of the present toy model. In real scattering the re-
pulsive potential is not so steep as the rectangular wall,
the polarization potential needs some “cut-off” modifica-
tions [10,12,22] and at the intermediate distances (some
1 − 3a0) a sharp matching from our model is “smoothed-
out” by the short-range correlation potential (see Fig. 1
where the present potential is compared with other, more
realistic models). The main goal of present result is to
show that matching point between the repulsive and po-
larization potentials scales with expected “atomic dimen-
sions”. Moreover, within the frame of present approach,
which is based on analytical solutions for r−4 potential,
different toy-models for the short-range correlation poten-
tial can be tested around the position of potential’s min-
imum in order to gain better intuitive understanding of
short-range interaction between low-energy positron and
atomic targets.

Recent theories that go beyond “potentials” intro-
duced by Green et al. [19], Fursa and Bray [20] and
Zammit et al. [66] show that virtual effects (virtual
positronium or virtual excitations, respectively) must
be included to model elastic cross sections. Both ap-
proaches use the idea of temporary formation of positro-
nium in the elastic scattering channel as postulated by
Mott and Massey [87]. There are also two experimental
hints (though not sufficiently clear) that the interaction
of positrons at the distance of the outermost electrons
is not a hard-sphere (pure elastic collisions) but rather
a sticky-ball (elastic collisions + virtual attachment): (i)
the evidence of enhanced annihilation signal in Ne below
the positronium-formation threshold in the experiment
of Szluinska and Laricchia [88] and somewhat confusing
discussion by Karwasz on existence of virtual positron-
ium in e+− He collision [42–45]. The present theoreti-
cal approach gives space for modelling these virtual ef-
fects in semi-empirical way. Without any doubt, further
non-trivial approaches are needed to understand positron-
atom and molecule elastic scattering.
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Franz from Gdansk Technical University (Poland) who per-
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J. Echeverŕıa, E. Cremades, F. Barragán, S. Alvarez, in
Covalent radii revisited, Dalton Trans. 21, 2832 (2008)

37. A.M. James, M.P. Lord, Macmillan’s Chemical and
Physical Data (Macmillan, London, UK, 1992)
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