Skip to main content
Log in

Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Haines, Plasma Phys. Control. Fusion 53, 093001 (2011)

    Article  ADS  Google Scholar 

  2. M.G. Haines, S.V. Lebedev, J.P. Chittenden, F.N. Beg, S.N. Bland, A.E. Dangor, Phys. Plasmas 7, 1672 (2000)

    Article  ADS  Google Scholar 

  3. D.D. Ryutov, M.S. Derzon, M.K. Matzen, Rev. Mod. Phys. 72, 167 (2000)

    Article  ADS  Google Scholar 

  4. M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, H.A. Eltayeb, H.A. Algamal, A.H. Saudy, J. Fusion Energ 33, 53 (2014)

    Article  Google Scholar 

  5. M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, A.H. Saudy, Eur. Phys. J. D 68, 160 (2014)

    Article  ADS  Google Scholar 

  6. M.E. Abdel-kader, M.A. Abd Al-Halim, A.M. Shagar, H.A. Eltayeb, J. Fusion Energ. 34, 238 (2015)

    Article  Google Scholar 

  7. C. Moreno, H. Bruzzone, J. Martínez, A. Clausse, IEEE Trans. Plasma Sci. 28, 1735 (2000)

    Article  ADS  Google Scholar 

  8. F. Dothan, H. Riege, E. Boggasch, K. Frank, J. Appl. Phys. 62, 3585 (1987)

    Article  ADS  Google Scholar 

  9. D. Potter, Nucl. Fusion 18, 813 (1978)

    Article  ADS  Google Scholar 

  10. Sh. Al-Hawat, S. Saloum, Contrib. Plasma Phys. 49, 5 (2009)

    Article  ADS  Google Scholar 

  11. S. Lee, J. Fusion Energ. 33, 319 (2014)

    Article  Google Scholar 

  12. S. Goudarzi, A. Raeisdana, J. Fusion Energ 30, 130 (2011)

    Article  ADS  Google Scholar 

  13. D. Klir, A.V. Shishlov, V.A. Kokshenev, P. Kubes, A.Yu. Labetsky, K. Rezac, J. Cikhardt, F.I. Fursov, B.M. Kovalchuk, J. Kravarik, N.E. Kurmaev, N.A. Ratakhin, O. Sila, J. Stodulka, Plasma Phys. Control. Fusion 55, 085012 (2013)

    Article  ADS  Google Scholar 

  14. S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996)

    Article  ADS  Google Scholar 

  15. S. Lee, S.H. Saw, Appl. Phys. Lett. 92, 021503 (2008)

    Article  ADS  Google Scholar 

  16. S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF. https://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm

  17. S. Lee, Plasma focus model yielding trajectory and structure, in Radiations in Plasmas, edited by B. Mcnamara. Proceedings of Spring College in Plasma Physics 1983, ICTP, Trieste (World Scientific Pub Co, Singapore, 1984), pp. 978–987

  18. S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42 (2013)

    Article  ADS  Google Scholar 

  19. M. Akel, S. Lee, J. Fusion Energ. 32, 111 (2013)

    Article  ADS  Google Scholar 

  20. S. Lee, S.H. Saw, Energies 3, 711 (2010)

    Article  Google Scholar 

  21. S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ. 30, 277 (2011)

    Article  ADS  Google Scholar 

  22. Z. Ali, S. Lee, F.D. Ismail, Saktioto, J. Ali, P.P. Yupapin, Procedia Eng. 8, 393 (2011)

    Article  Google Scholar 

  23. M.J. Sadowski, M. Scholz, NUKLEONIKA 57, 11 (2012)

    Google Scholar 

  24. R. Verma, R.S. Rawat, P. Lee, A.T.L. Tan, H. Shariff, G.J. Ying, S.V. Springham, A. Talebitaher, U. Ilyas, A. Shyam, IEEE Trans. Plasma Sci. 40, 3280 (2012)

    Article  ADS  Google Scholar 

  25. F. Veloso, C. Pavez, J. Moreno, V. Galaz, M. Zambra, L. Soto, J. Fusion Energ. 31, 30 (2012)

    Article  ADS  Google Scholar 

  26. S. Lee, Appl. Phys. Lett. 95, 151503 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Abd Al-Halim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Al-Halim, M.A., Afify, M.S. Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model. Eur. Phys. J. D 71, 57 (2017). https://doi.org/10.1140/epjd/e2016-70280-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70280-8

Keywords

Navigation