Skip to main content
Log in

Stopping cross sections of protons in Ti, TiO2 and Si using medium energy ion scattering

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Stopping cross sections of protons in Ti, Si, and TiO2 films in the energy range 50–170 keV were determined from medium energy ion scattering (MEIS) spectra by an iterative procedure. The energy loss of protons was investigated for pure Ti and Si films, deposited by molecular beam epitaxy (MBE) onto n-Si(100) and diamond-like carbon (DLC) substrates respectively. Consecutive annealing of Ti at 200 °C in O2 resulted in stoichiometric TiO2 thin-films. Thickness and composition of the films and the interfacial properties were determined using Rutherford backscattering spectroscopy (RBS), MEIS, and X-ray photoelectron spectroscopy (XPS). Calculated stopping cross sections of Ti, Si, and TiO2 in the range of energies were compared with the commonly used SRIM2003 values. For Ti and Si, SRIM2003 values appear to be overestimated over the entire energy range. The new stopping cross sections explain deviations from previously reported values for SrTiO3. We note that the stopping cross sections of O in a gaseous phase, used in Bragg’s rule calculations, cannot be applied for accurate quantitative ion beam analysis in solid compounds in the medium ion energy range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Vickerman, Surface Analysis: The principle Techniques, 2nd edn. (John Wiley and Sons, 2009)

  2. J.F. Ziegler, J.M. Manoyan, Nucl. Instrum. Methods Phys. Res. B 35, 215 (1988)

    Article  ADS  Google Scholar 

  3. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press Inc., 1978)

  4. J. Tesmer, M. Nastasi, Handbook of modern ion beam materials analysis, 2nd edn. (Materials research society, 1995)

  5. W.H. Bragg, R. Kleeman, Philosophical Magazine 10, 318 (1905)

    Article  Google Scholar 

  6. D. Powers, Acc. Chem. Res. 13, 433 (1980)

    Article  Google Scholar 

  7. D.I. Thwaites, Nucl. Instrum. Methods Phys. Res. B 27, 293 (1987)

    Article  ADS  Google Scholar 

  8. R.B. Brown, D. Powers, J. Appl. Phys. 50, 5099 (1979)

    Article  ADS  Google Scholar 

  9. E. Chau, D. Powers, A. Lodhi, R. Brown, J. Appl. Phys. 49, 2346 (1978)

    Article  ADS  Google Scholar 

  10. J. Oddershede, J. Sabin, Nucl. Instrum. Methods Phys. Res. B 42, 7 (1989)

    Article  ADS  Google Scholar 

  11. P. Bourland, D. Powers, Phys. Rev. B 3, 3635 (1971)

    Article  ADS  Google Scholar 

  12. D.C. Santry, R.D. Werner, Nucl. Instrum. Methods Phys. Res. B 14, 169 (1986)

    Article  ADS  Google Scholar 

  13. D. Thwaites, Radiat. Res. 95, 495 (1983)

    Article  Google Scholar 

  14. Y. Hoshino, T. Okazawa, T. Nishii, T. Nishimura, Y. Kido, Nucl. Instrum. Methods Phys. Res. B 171, 409 (2000)

    Article  ADS  Google Scholar 

  15. J.F. Ziegler, W.K. Chu, J.S.-Y. Feng, Appl. Phys. Lett. 27, 387 (1975)

    Article  ADS  Google Scholar 

  16. W.N. Lennard, H. Xia, J.K. Kim, Nucl. Instrum. Methods Phys. Res. B 215, 297 (2004)

    Article  ADS  Google Scholar 

  17. C. Pascual-Izarra, M. Bianconi, G. Lulli, C. Summonte, Nucl. Instrum. Methods Phys. Res. B 196, 209 (2002)

    Article  ADS  Google Scholar 

  18. W. Neuwirth, W. Pietsch, K. Richter, U. Hauser, Zeitschrift Fur Phys. A: Atoms Nucl. 275, 215 (1975)

    Article  ADS  Google Scholar 

  19. J.F. Ziegler, J. Appl. Phys. 85, 1249 (1999)

    Article  ADS  Google Scholar 

  20. D.I. Thwaites, Nucl. Instrum. Methods Phys. Res. B 12, 84 (1985)

    Article  ADS  Google Scholar 

  21. H. Paul, Institute fur Experimental Physik, http://www.exphys.jku.at/stopping (2015)

  22. S.N. Dedyulin, M.P. Singh, F.S. Razavi, L.V. Goncharova, Nucl. Instrum. Methods Phys. Res. B 288, 60 (2012)

    Article  ADS  Google Scholar 

  23. E. Rauhala, N.P. Barradas, S. Fazinic, M. Mayer, E. Szilagyi, M. Thompson, Nucl. Instrum. Methods Phys. Res. B 244, 436 (2006)

    Article  ADS  Google Scholar 

  24. M. Mayer, SIMNRA v. 6.05 (1997)

  25. N. Fairley, CasaXPS (2013)

  26. J. Kim, W.N. Lennard, C.P. McNorgan, J. Hendriks, I.V. Mitchell, D. Landheer, J. Gredley, Curr. Appl. Phys. 3, 75 (2003)

    Article  Google Scholar 

  27. T. Nishimura, MEISwin v. 1.0X (2015)

  28. J. Tesmer, M. Nastasi, Handbook of modern ion beam materials analysis, 2nd edn., Pitfalls in Ion Beam Analysis (Materials research society, 1995), p. 355

  29. J.F. Ziegler, SRIM, www.srim.org (2015)

  30. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, NIST Standard Reference Database 124 (2005), http://www.nist.gov/pml/data/star/

  31. M. Abdesselam, S. Ouichaoui, M. Azzouz, A.C. Chami, M. Siad, Nucl. Instrum. Methods Phys. Res. B 266, 3899 (2008)

    Article  ADS  Google Scholar 

  32. G. Konac, S. Kalbitzer, Ch. Klatt, D. Niemann, R. Stoll, Nucl. Instrum. Methods Phys. Res. B 159, 136 (1998)

    Google Scholar 

  33. M. Fama, G.H. Lantschner, J.C. Eckardt, N.R. Arista, J.E. Gayone, E. Sanchez, F. Lovey, Nucl. Instrum. Methods Phys. Res. B 91, 193 (2002)

    Google Scholar 

  34. A. Ikeda, K. Sumitomo, T. Nishioka, Y. Kido, Nucl. Instrum. Methods Phys. Res. B 34, 115 (1996)

    Google Scholar 

  35. D. Niemann, G. Konac, S. Kalbitzer, Nucl. Instrum. Methods Phys. Res. B 118, 11 (1996)

    Article  ADS  Google Scholar 

  36. D.C. Santry, R.D. Werner, Nucl. Instrum. Methods Phys. Res. B 188, 211 (1981)

    Article  Google Scholar 

  37. J.H. Ormrod, Nucl. Instrum. Methods Phys. Res. B 95, 49 (1971)

    Article  Google Scholar 

  38. N. Shiomi-Tsuda, N. Sakamoto, R. Ishiwari, Nucl. Instrum. Methods Phys. Res. B 93, 391 (1994)

    Article  ADS  Google Scholar 

  39. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, R. Dormoy, Surf. Sci. 254, 81 (1991)

    Article  ADS  Google Scholar 

  40. B. Siemensmeyer, K. Bade, J.W. Schultze, Ber. Bunsenges. Phys. Chem. 95, 1461 (1991)

    Article  Google Scholar 

  41. Y. Kido, T. Hioki, Phys. Rev. 8, 2667 (1983)

    Article  Google Scholar 

  42. H.H. Andersen, J.F. Ziegler, Hydrogen: Stopping Powers and Ranges in all Elements (Pergamon Press, Inc., 1977)

  43. F.R. Silvina, M. Behar, L. Nagamine, J. Fernandez-Varea, I. Abril, R. Garcia-Molina, C. Montanari, J. Aguiar, D. Mitnik, J. Miraglia, N. Arista, Eur. Phys. J. D 68, 194 (2014)

    Article  ADS  Google Scholar 

  44. D.I. Thwaites, Nucl. Instrum. Methods Phys. Res. B 27, 293 (1987)

    Article  ADS  Google Scholar 

  45. D. Primetzhofer, Nucl. Instr. Meth. B 320, 100 (2014)

    Article  ADS  Google Scholar 

  46. M. Behar, R.C. Fadanelli, I. Abril, R. Garcia-Molina, C.D. Denton, L.C.C.M. Nagamine, N.R. Arista, Phys. Rev. A 80, 062901 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Brocklebank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brocklebank, M., Dedyulin, S.N. & Goncharova, L.V. Stopping cross sections of protons in Ti, TiO2 and Si using medium energy ion scattering. Eur. Phys. J. D 70, 248 (2016). https://doi.org/10.1140/epjd/e2016-70277-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70277-3

Keywords

Navigation