Skip to main content
Log in

Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Motivated by the current interest in low energy electron induced fragmentation of organometallic complexes in focused electron beam induced deposition (FEBID) we have evaluated different theoretical protocols for the calculation of thermochemical threshold energies for DEA to the organometallic complex π-allyl ruthenium (II) tricarbonyl bromide. Several different computational methods including density functional theory (DFT), hybrid-DFT and coupled cluster were evaluated for their ability to predict these threshold energies and compared with the respective experimental values. Density functional theory and hybrid DFT methods were surprisingly found to have poor reliability in the modelling of several DEA reactions; however, the coupled cluster method LPNO-pCCSD/2a was found to produce much more accurate results. Using the local correlation pair natural orbital (LPNO) methodology, high level coupled cluster calculations for open-shell systems of this size are now affordable, paving the way for reliable theoretical DEA predictions of such compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Utke, P. Hoffmann, J. Melngailis, J. Vaccum Sci. Technol. B 26, 1197 (2008)

    Article  Google Scholar 

  2. W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)

    Article  ADS  Google Scholar 

  3. J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972)

    Article  ADS  Google Scholar 

  4. A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995)

    Article  ADS  Google Scholar 

  5. N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit, Microelectron. Eng. 61-62, 693–699 (2002)

    Article  Google Scholar 

  6. A. Botman, D.A.M. de Winter, J.J.L. Mulders, J. Vaccum Sci. Technol. B 26, 2460 (2008)

    Article  Google Scholar 

  7. R.M. Thorman, T.P. Kumar, R., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015)

    Article  Google Scholar 

  8. O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)

    Article  Google Scholar 

  9. M. Allan, J. Chem. Phys. 134, 204309 (2011)

    Article  ADS  Google Scholar 

  10. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)

    Article  Google Scholar 

  11. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Angew. Chem. Int. Ed. Engl. 50, 9475 (2011)

    Article  Google Scholar 

  12. S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)

    Article  ADS  Google Scholar 

  13. I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. 277, 4 (2008)

    Article  ADS  Google Scholar 

  14. R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson (in preparation)

  15. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  19. L.M.J. Huntington, M. Nooijen, J. Chem. Phys. 133, 184109 (2010)

    Article  ADS  Google Scholar 

  20. L.M.J. Huntington, A. Hansen, F. Neese, M. Nooijen, J. Chem. Phys. 136, 064101 (2012)

    Article  ADS  Google Scholar 

  21. F. Neese, A. Hansen, D.G. Liakos, J. Chem. Phys. 131, 064103 (2009)

    Article  ADS  Google Scholar 

  22. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  23. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  Google Scholar 

  24. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  25. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  26. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)

    Article  ADS  Google Scholar 

  27. C. van Wüllen, J. Chem. Phys. 109, 392 (1998)

    Article  ADS  Google Scholar 

  28. D.A. Pantazis, X.-Y. Chen, C.R. Landis, F. Neese, J. Chem. Theory Comput. 4, 908 (2008)

    Article  Google Scholar 

  29. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  30. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  31. K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126, 124101 (2007)

    Article  ADS  Google Scholar 

  32. K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119, 11113 (2003)

    Article  ADS  Google Scholar 

  33. F. Neese, J. Am. Chem. Soc. 128, 10213 (2006)

    Article  Google Scholar 

  34. E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D 68, 121 (2014)

    Article  ADS  Google Scholar 

  35. J.A. Spencer, J.A. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015)

    Article  Google Scholar 

  36. M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006)

    Article  Google Scholar 

  37. M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007)

    Article  Google Scholar 

  38. M. Bühl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008)

    Article  Google Scholar 

  39. M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006)

    Article  Google Scholar 

  40. C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009)

    Article  Google Scholar 

  41. T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014)

    Article  Google Scholar 

  42. C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A 40, 3698 (1989)

    Article  ADS  Google Scholar 

  43. C. Riplinger, P. Pinski, U. Becker, E.F. Valeev, F. Neese, J. Chem. Phys. 144, 024109 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ragnar Bjornsson or Oddur Ingólfsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorman, R., Bjornsson, R. & Ingólfsson, O. Computational study of dissociative electron attachment to π-allyl ruthenium (II) tricarbonyl bromide. Eur. Phys. J. D 70, 164 (2016). https://doi.org/10.1140/epjd/e2016-70166-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70166-9

Navigation