Skip to main content
Log in

Structure and energetics in dissociative electron attachment to HFeCo3(CO)12

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here we report structural parameters on the heteronuclear transition metal complex HFeCo3(CO)12 and its anion formed upon electron attachment, as well as the thermochemical thresholds for sequential CO loss and the loss of the apical group (as Fe(CO)- 3 and Fe(CO)- 4). Geometrical parameters from single crystal X-ray diffraction are compared with calculated values from density functional theory calculations, for the neutral and anionic ground state of this transition metal cluster. Further, experimental appearance energies for sequential CO loss and the formation of Fe(CO)- 3 and Fe(CO)- 4 are compared to the respective calculated threshold values. Geometry optimizations were performed at the BP86/def2-TZVP level of theory while the threshold energies were calculated at the PBE0/ma-def2-TZVP level of theory. The SOMO of the anion is found to have a clear Fe-Co anti-bonding character resulting in elongation of the Fe-Co bonds and the transformation of one of the terminal Co-CO groups to a bridging Co-CO-Fe group upon electron attachment. The thermochemical threshold PBE0 calculations are concordant with the observed appearance energies and structural parameters from single crystal X-ray diffraction for the neutral molecule are well reproduced at the BP86/def2-TZVP level of theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.C. Gates, L. Guczi, H. Knözinger, Metal clusters in catalysis (Elsevier, Amsterdam, 1986)

  2. M. Moskovits, Ann. Rev. Phys. Chem. 42, 465 (1991)

    Article  ADS  Google Scholar 

  3. C.L. Czekaj-Korn, G.L. Geoffroy, Transformation of Organometallics into Common and Exotic Materials: Design and Activation 141, 157 (1988)

    Article  Google Scholar 

  4. F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Nanotechnology 26, 475701 (2015)

    Article  ADS  Google Scholar 

  5. M. Winhold, C.H. Schwalb, F. Porrati, R. Sachser, A.S. Frangakis, B. Kämpken, A. Terfort, N. Auner, M. Huth, ACS nano 5, 9675 (2011)

    Article  Google Scholar 

  6. F. Porrati, E. Begun, M. Winhold, C.H. Schwalb, R. Sachser, A. Frangakis, M. Huth, Nanotechnology 23, 185702 (2012)

    Article  ADS  Google Scholar 

  7. F. Porrati, B. Kämpken, A. Terfort, M. Huth, J. Appl. Phys. 113, 053707 (2013)

    Article  ADS  Google Scholar 

  8. R.M. Thorman, R. Kumar T P, D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015)

    Article  Google Scholar 

  9. N. Silvis-Cividjian, C. Hagen, L. Leunissen, P. Kruit, Microelectron. Eng. 61, 693 (2002)

    Article  Google Scholar 

  10. A. Botman, D. De Winter, J. Mulders, J. Vacuum Sci. Technol. B 26, 2008 (2008)

    Article  Google Scholar 

  11. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Angew. Chem. Int. Ed. 50, 9475 (2011)

    Article  Google Scholar 

  12. M. Allan, J. Chem. Phys. 134, 204309 (2011)

    Article  ADS  Google Scholar 

  13. O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)

    Article  Google Scholar 

  14. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)

    Article  Google Scholar 

  15. K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012)

    Article  Google Scholar 

  16. K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, Š. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012)

    Article  ADS  Google Scholar 

  17. S. Engmann, B. Ómarsson, M. Lacko, M. Stano, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 234309 (2013)

    Article  ADS  Google Scholar 

  18. S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)

    Article  ADS  Google Scholar 

  19. P. Papp, S. Engmann, M. Kučera, M. Stano, Š. Matejčík, O. Ingólfsson, Int. J. Mass Spectrom. 356, 24 (2013)

    Article  ADS  Google Scholar 

  20. M. Lacko, P. Papp, K. Wnorowski, Š. Matejčík, Eur. Phys. J. D 69, 84 (2015)

    Article  ADS  Google Scholar 

  21. P. Chini, L. Colli, M. Peraldo, Gazz. Chim. Ital. 90, 1005 (1960)

    Google Scholar 

  22. E. Guglielminotti, D. Osella, P. Stanghellini, J. Organomet. Chem. 281, 291 (1985)

    Article  Google Scholar 

  23. R.G. Teller, R.D. Wilson, R.K. McMullan, T.F. Koetzle, R. Bau, J. Am. Chem. Soc. 100, 3071 (1978)

    Article  Google Scholar 

  24. G.L. Geoffroy, R.A. Epstein, Inorganic Chem. 16, 2795 (1977)

    Article  Google Scholar 

  25. J.C. Kotz, J.V. Petersen, R.C. Reed, J. Organomet. Chem. 120, 433 (1976)

    Article  Google Scholar 

  26. B.M. Peake, B.H. Robinson, J. Simpson, D.J. Watson, Inorganic Chem. 16, 405 (1977)

    Article  Google Scholar 

  27. C.E. Strouse, L.F. Dahl, J. Am. Chem. Soc. 93, 6032 (1971)

    Article  Google Scholar 

  28. G.F. Holland, D.E. Ellis, W.C. Trogler, J. Am. Chem. Soc. 108, 1884 (1986)

    Article  Google Scholar 

  29. G.F. Holland, D.E. Ellis, D.R. Tyler, H.B. Gray, W.C. Trogler, J. Am. Chem. Soc. 109, 4276 (1987)

    Article  Google Scholar 

  30. W.C. Trogler, Acc. Chem. Res. 23, 239 (1990)

    Article  Google Scholar 

  31. J.P. Lomont, S.C. Nguyen, C.B. Harris, Organometallics 31, 4031 (2012)

    Article  Google Scholar 

  32. G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination, University of Göttingen, Göttingen (1997)

  33. E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D 68, 121 (2014)

    Article  ADS  Google Scholar 

  34. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)

    Google Scholar 

  35. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  37. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  40. J. Zheng, X. Xu, D.G. Truhlar, Theoret. Chem. Acc. 128, 295 (2011)

    Article  Google Scholar 

  41. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  42. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  43. F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356, 98 (2009)

    Article  ADS  Google Scholar 

  44. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)

    Article  Google Scholar 

  45. I. Bald, J. Langer, P. Tegeder, O. Ingólfsson, Int. J. Mass Spectrom. 277, 4 (2008)

    Article  ADS  Google Scholar 

  46. R. Kumar T P, S. Barth, R. Bjornsson, O. Ingólfsson (2016) (In preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ragnar Bjornsson or Oddur Ingólfsson.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T P, R., Barth, S., Bjornsson, R. et al. Structure and energetics in dissociative electron attachment to HFeCo3(CO)12 . Eur. Phys. J. D 70, 163 (2016). https://doi.org/10.1140/epjd/e2016-70164-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70164-y

Navigation