Skip to main content
Log in

A perturbative correction for electron-inertia in magnetized sheath structures

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose a hydrodynamic model to study the equilibrium properties of planar plasma sheaths in two-component quasi-neutral magnetized plasmas. It includes weak but finite electron-inertia incorporated via a regular perturbation of the electronic fluid dynamics only relative to a new smallness parameter, δ, assessing the weak inertial-to-electromagnetic strengths. The zeroth-order perturbation around δ leads to the usual Boltzmann distribution law, which describes inertialess thermalized electrons. The forthwith next higher-order yields the modified Boltzmann law describing the putative lowest-order electron-inertial correction, which is applied meticulously to derive the local Bohm criterion for sheath formation. It is found to be influenced jointly by electron-inertial corrective effects, magnetic field and field orientation relative to the bulk plasma flow. We establish that the mutualistic action of electron-inertia amid gyro-kinetic effects slightly enhances the ion-flow Mach threshold value (typically, M i0 ⩾ 1.140), against the normal value of unity, confrontationally towards the sheath entrance. A numerical illustrative scheme is methodically constructed to see the parametric dependence of the new sheath properties on diverse problem arguments. The merits and demerits are highlighted in the light of the existing results conjointly with clear indication to future ameliorations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthrie, R. Wakerling (McGraw-Hill, New York, 1949)

  2. P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP Publishing Ltd., Bristol and Philadelphia, 2000)

  3. K.U. Riemann, J. Phys. D 24, 493 (1991)

    Article  ADS  Google Scholar 

  4. P.K. Karmakar, U. Deka, C.B. Dwivedi, Phys. Plasmas 12, 032105 (2005)

    Article  ADS  Google Scholar 

  5. P.K. Karmakar, C.B. Dwivedi, J. Math. Phys. 47, 032901 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.K. Karmakar, U. Deka, C.B. Dwivedi, Phys. Plasmas 13, 104702 (2006)

    Article  ADS  Google Scholar 

  7. U. Deka, A. Sarma, R. Prakash, P.K. Karmakar, C.B. Dwivedi, Phys. Scr. 69, 303 (2004)

    Article  ADS  Google Scholar 

  8. U. Deka, C.B. Dwivedi, Braz. J. Phys. 40, 333 (2010)

    Article  Google Scholar 

  9. M. Gohain, P.K. Karmakar, Europhys. Lett. 112, 45002 (2015)

    Article  ADS  Google Scholar 

  10. R. Chalise, R. Khanal, J. Mater. Sci. Eng. A 5, 41 (2015)

    Google Scholar 

  11. X. Zou, J.Y. Liu, Y. Gong, Z.X. Wang, Y. Liu, X.G. Wang, Vacuum 73, 681 (2004)

    Article  Google Scholar 

  12. X. Zou, M. Qiu, H. Liu, L. Zhang, J. Liu, Y. Gong, Vacuum 83, 205 (2009)

    Article  ADS  Google Scholar 

  13. J. Ou, J. Yang, Phys. Plasmas 19, 113504 (2012)

    Article  ADS  Google Scholar 

  14. J.E. Allen, Contrib. Plasma Phys. 48, 400 (2008)

    Article  ADS  Google Scholar 

  15. M.M. Hatami, B. Shokri, A.R. Niknam, Phys. Plasmas 15, 123501 (2008)

    Article  ADS  Google Scholar 

  16. H. Liu, X. Zou, M. Qiu, Plasma Sci. Technol. 16, 633 (2014)

    Article  ADS  Google Scholar 

  17. U.L. Rohde, G.C. Jain, A.K. Poddar, A.K. Ghosh, Introduction to Integral Calculus (Wiley, New Jersey, 2012)

  18. M. Khoramabadi, H.R. Ghomi, M. Ghoranneviss, J. Plasma Fusion Res. 8, 1399 (2009)

    Google Scholar 

  19. J.C. Butcher, Appl. Num. Math. 24, 331 (1997)

    Article  MathSciNet  Google Scholar 

  20. S. Kuhn, K.U. Riemann, N. Jelic, D.D. Tskhakaya Sr., D. Tskhakaya Jr., M. Stanojevic, Phys. Plasmas 13, 013503 (2006)

    Article  ADS  Google Scholar 

  21. S.F. Masoudi, Zh. Ebrahiminejad, Eur. Phys. J. D 59, 421 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pralay K. Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohain, M., Karmakar, P. A perturbative correction for electron-inertia in magnetized sheath structures. Eur. Phys. J. D 70, 222 (2016). https://doi.org/10.1140/epjd/e2016-60740-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60740-6

Keywords

Navigation