Skip to main content
Log in

Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0,j = 1) → SH + H and Si + O2(v = 0,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C. Light, J. Chem. Phys. 40, 3221 (1964)

    Article  ADS  Google Scholar 

  2. P. Pechukas, J.C. Light, J. Chem. Phys. 42, 3281 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.C. Light, J. Lin, J. Chem. Phys. 43, 3209 (1965)

    Article  ADS  Google Scholar 

  4. J. Lin, J. Light, J. Chem. Phys. 45, 2545 (1966)

    Article  ADS  Google Scholar 

  5. P. Pechukas, J.C. Light, C. Rankin, J. Chem. Phys. 44, 794 (1966)

    Article  ADS  Google Scholar 

  6. R.A. White, J.C. Light, J. Chem. Phys. 55, 379 (1971)

    Article  ADS  Google Scholar 

  7. W.H. Miller, J. Chem. Phys. 52, 543 (1970)

    Article  ADS  Google Scholar 

  8. J.C. Light, Discuss. Faraday Soc. 44, 14 (1967)

    Article  Google Scholar 

  9. W.B. Miller, S.A. Safron, D.R. Herschbach, Discuss. Faraday Soc. 44, 108 (1967)

    Article  Google Scholar 

  10. S. Safron, N. Weinstein, D. Herschbach, J. Tully, Chem. Phys. Lett. 12, 564 (1972)

    Article  ADS  Google Scholar 

  11. W.H. Miller, J. Chem. Phys. 65, 2216 (1976)

    Article  ADS  Google Scholar 

  12. E. Pollak, P. Pechukas, J. Chem. Phys. 70, 325 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. E.J. Rackham, F. Huarte-Larrañaga, D.E. Manolopoulos, Chem. Phys. Lett. 343, 356 (2001)

    Article  ADS  Google Scholar 

  14. E.J. Rackham, T. González-Lezana, D.E. Manolopoulos, J. Chem. Phys. 119, 12895 (2003)

    Article  ADS  Google Scholar 

  15. T. González-Lezana, Int. Rev. Phys. Chem. 26, 29 (2007)

    Article  Google Scholar 

  16. S.Y. Lin, H. Guo, J. Chem. Phys. 120, 9907 (2004)

    Article  ADS  Google Scholar 

  17. S.Y. Lin, H. Guo, J. Chem. Phys. 122, 074304 (2005)

    Article  ADS  Google Scholar 

  18. S.Y. Lin, H. Guo, J. Phys. Chem. A 108, 10066 (2004)

    Article  Google Scholar 

  19. S.Y. Lin, E.J. Rackham, H. Guo, J. Phys. Chem. A 110, 1534 (2006)

    Article  Google Scholar 

  20. F.J. Aoiz, V. Sáez Rábanos, T. González-Lezana, D.E. Manolopoulos, J. Chem. Phys. 126, 161101 (2007)

    Article  ADS  Google Scholar 

  21. F.J. Aoiz, T. González-Lezana, V. Sáez Rábanos, J. Chem. Phys. 127, 174109 (2007)

    Article  ADS  Google Scholar 

  22. F.J. Aoiz, T. González-Lezana, V.S. Rábanos, J. Chem. Phys. 129, 094305 (2008)

    Article  ADS  Google Scholar 

  23. P. Bargueño, P.G. Jambrina, J.M. Alvariño, M.L. Hernández, F.J. Aoiz, M. Menéndez, E. Verdasco, T. González-Lezana, J. Phys. Chem. A 113, 14237 (2009)

    Article  Google Scholar 

  24. J. Mayneris, A. Saracibar, E.M. Goldfield, M. González, E. García, S.K. Gray, J. Phys. Chem. A 110, 5542 (2006)

    Article  Google Scholar 

  25. P. Larrégaray, L. Bonnet, J.-C. Rayez, J. Phys. Chem. A 110, 1552 (2006)

    Article  Google Scholar 

  26. P. Larrégaray, L. Bonnet, Comput. Theor. Chem. 990, 18 (2012)

    Article  Google Scholar 

  27. L. Bañares, F.J. Aoiz, P. Honvault, J.-M. Launay, J. Phys. Chem. A 108, 1616 (2004)

    Article  Google Scholar 

  28. S.-H. Lee, K. Liu, Appl. Phys. B 71, 627 (2000)

    Article  ADS  Google Scholar 

  29. S.-H. Lee, K. Liu, J. Phys. Chem. A 102, 8637 (1998)

    Article  Google Scholar 

  30. F. Dayou, A. Spielfiedel, J. Chem. Phys. 119, 4237 (2003)

    Article  ADS  Google Scholar 

  31. F. Dayou, W.-Ü.L. Tchang-Brillet, M. Monnerville, J. Chem. Phys. 123, 084306 (2005)

    Article  ADS  Google Scholar 

  32. F. Dayou, P. Larrégaray, L. Bonnet, J.-C. Rayez, P.N. Arenas, T. González-Lezana, J. Chem. Phys. 128, 174307 (2008)

    Article  ADS  Google Scholar 

  33. P. Bargueño, T. González-Lezana, P. Larrégaray, L. Bonnet, J.-C. Rayez, Phys. Chem. Chem. Phys. 9, 1127 (2007)

    Article  Google Scholar 

  34. P. Bargueño, T. González-Lezana, P. Larrégaray, L. Bonnet, J.-C. Rayez, M. Hankel, S.C. Smith, A.J.H.M. Meijer, J. Chem. Phys. 128, 244308 (2008)

    Article  ADS  Google Scholar 

  35. P. Larrégaray, L. Bonnet, J.-C. Rayez, J. Chem. Phys. 127, 084308 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás González-Lezana.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions (7th International Symposium)”, edited by Gerardo Delgado Barrio, Andrey Solov’Yov, Pablo Villarreal, Rita Prosmiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios, L., Rubayo-Soneira, J. & González-Lezana, T. Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions. Eur. Phys. J. D 70, 57 (2016). https://doi.org/10.1140/epjd/e2016-60714-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60714-8

Keywords

Navigation