Skip to main content
Log in

Tuning the defect mode in ternary photonic crystal with external voltage for designing a controllable optical filter

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, behavior of defect mode in one-dimensional ternary photonic crystal (1DTPC) structure with arrangement of (MgF2/Ag/TiO2)5LiNbO3(TiO2/Ag/MgF2)5 was investigated under the applied external electric dc voltage. The defect layer is lithium niobate (LiNbO3), an electro-optical (EO) material whose refractive index is voltage-dependent with high EO coefficient. In comparison, magnesium fluoride (MgF2) and titanium dioxide (TiO2) layers have very low EO coefficients. A narrow localized defect mode with perfect transmittance was appeared inside the photonic band gap. Under applying the positive or negative biases, red shift and blue shift was observed in the defect mode, respectively. More than 120 nm tunability was obtained under externally applied voltage in the range of −200 V to 200 V. The physical interpretation is very simple. Change in optical path-length displaces the localized wavelength of the defect mode due to Bragg interface condition. The externally tunable localized mode can be employed in designing a controllable optical filter, one of the essential devices for new-generation all-optical integrated circuits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4186 (2000)

    ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons, 1999)

  4. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  5. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  6. K. Jamshidi-Ghaleh, Z. Safari, F. Moslemi, Eur. Phys. J. D 69, 95 (2015)

    Article  ADS  Google Scholar 

  7. K. Jamshidi-Ghaleh, Z. Ebrahimpour, Eur. Phys. J. D 67, 27 (2013)

    Article  ADS  Google Scholar 

  8. K. Jamshidi-Ghaleh, Z. Ebrahimpour, F. Moslemi, Physica B 468, 72 (2015)

    Article  ADS  Google Scholar 

  9. W.Y. Chiu, Y.S. Wu, Y.J. Chan, T.D. Wang, C.H. Hou, H.T. Chien, C.C. Chen, Opt. Commun. 28, 4749 (2011)

    Article  ADS  Google Scholar 

  10. S. Arishmar Cerqueira Jr., Rep. Prog. Phys. 73, 024401 (2010)

    Article  ADS  Google Scholar 

  11. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University Press, 2nd edition, 2008)

  12. F. Poli, A. Cucinotta, S. Selleri, in Photonic Crystal Fibers: Properties and Applications, Series in Materials (Springer-Verlag, New-York, 2007), Vol. 51

  13. C.-J. Wu, Y.-H. Chung, B.-J. Syu, T.-J. Yang, Progress In Electromagnetics Research, PIER 102, 81 (2010)

    Article  Google Scholar 

  14. A. Banerjee, J. Electromagnet Wave 22, 2439 (2008)

    Article  Google Scholar 

  15. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, Appl. Phys. Lett. 80, 4291 (2002)

    Article  ADS  Google Scholar 

  16. X.-K. Kong, S.-B. Liu, H.-F. Zhang, C.-Z. Li, B.-R. Bian, J. Opt. 13, 035101 (2011)

    Article  ADS  Google Scholar 

  17. S.A. El-Naggar, Eur. Phys. J. D 67, 54 (2013)

    Article  ADS  Google Scholar 

  18. H.-F. Zhang, S.-B. Liu, X.-K. Kong, Phys. Plasmas 19, 122103 (2012)

    Article  ADS  Google Scholar 

  19. H. Tian, Y. Ji, Jpn J. Appl. Phys. 50, 080206 (2011)

    Article  ADS  Google Scholar 

  20. V. Skoromets, H. Němec, C. Kadlec, D. Fattakhova-Rohlfing, P. Kužel, Appl. Phys. Lett. 102, 241106 (2013)

    Article  ADS  Google Scholar 

  21. G. Bin, P. Li, Q. Xiaoming, Plasma Sci. Technol. 15, 609 (2013)

    Article  Google Scholar 

  22. G. Wang, J.P. Huang, K.W. Yu, Appl. Phys, Lett. 91, 19111 (2007)

    Google Scholar 

  23. A.D. Rakić, A.B. Djurišic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  24. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1989)

  25. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

  26. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 2005)

  27. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, Y. Rosenwaks, Phys. Rev. Lett. 90, 107601 (2003)

    Article  ADS  Google Scholar 

  28. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, Appl. Phys. Lett. 82, 103 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Jamshidi-Ghaleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi-Ghaleh, K., Rashidi, S. & Vahedi, A. Tuning the defect mode in ternary photonic crystal with external voltage for designing a controllable optical filter. Eur. Phys. J. D 69, 221 (2015). https://doi.org/10.1140/epjd/e2015-60283-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60283-4

Keywords

Navigation