Skip to main content
Log in

Light propagation inside ‘cavity’ formed between nonlinear defect and interface of two dissimilar one-dimensional linear photonic lattices

The European Physical Journal D Aims and scope Submit manuscript

Abstract

Light propagation through composite photonic lattice containing a cavity bounded by the interface between two structurally different linear lattices and on-site nonlinear defect in one of them is investigated numerically. We find conditions under which dynamically stable bounded cavity modes can exist. We observe various cavity localized modes such as: single-hump, multi-hump, and moving breathing modes. Light propagation obstructions are phenomenologically related to the Fano resonances. Presented numerical findings may lead to interesting applications, such as blocking, filtering, and transporting of light beams through the optical medium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  4. X. Gan, H. Clevenson, C.-C. Tsai, L. Li, D. Englund, Sci. Rep. 3, 2145 (2013)

    ADS  Google Scholar 

  5. D.N. Christodoulides, R.I. Joseph, Opt. Lett. 13, 794 (1988)

    Article  ADS  Google Scholar 

  6. H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, J.S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998)

    Article  ADS  Google Scholar 

  7. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, M. Segev, Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  8. R. Iwanow, D.A. May-Arrioja, D.N. Christodoulides, G.I. Stegeman, Y. Min, W. Sohler, Phys. Rev. Lett. 95, 053902 (2005)

    Article  ADS  Google Scholar 

  9. M. Stepić, E. Smirnov, C.E. Rüter, D. Kip, A. Maluckov, Lj. Hadžievski, Opt. Lett. 32, 823 (2007)

    Article  ADS  Google Scholar 

  10. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

    Article  ADS  Google Scholar 

  11. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

    Article  ADS  Google Scholar 

  12. U. Peschel, R. Morandotti, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, Appl. Phys. Lett. 75, 1348 (1999)

    Article  ADS  Google Scholar 

  13. R. Morandotti, H.S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C.R. Stanley, J.S. Aitchison, Opt. Lett. 28, 834 (2003)

    Article  ADS  Google Scholar 

  14. A.E. Miroshnichenko, S. Flach, Yu.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  15. U. Naether, D.E. Rivas, M.A. Larenas, M.I. Molina, R.A. Vicencio, Opt. Lett. 34, 2721 (2009)

    Article  ADS  Google Scholar 

  16. M.I. Molina, Yu.S. Kivshar, Phys. Lett. A 362, 280 (2007)

    Article  ADS  Google Scholar 

  17. S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, R. Morandotti, M. Volatier, V. Aimez, R. Ares, C.E. Rüter, D. Kip, Opt. Exp. 15, 4663 (2007)

    Article  ADS  Google Scholar 

  18. S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, R. Morandotti, M. Volatier, V. Aimez, R. Ares, E.H. Yang, G. Salamo, Opt. Express 16, 10480 (2008)

    Article  ADS  Google Scholar 

  19. A. Kanshu, C.E. Rüter, D. Kip, P.P. Beličev, I. Ilić, M. Stepić, V.M. Shandarov, Opt. Express 19, 1158 (2011)

    Article  ADS  Google Scholar 

  20. A. Szameit, Y.V. Kartashov, F. Dreisow, M. Heinrich, V.A. Vysloukh, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, L. Torner, Opt. Lett. 33, 663 (2008)

    Article  ADS  Google Scholar 

  21. Y. Hu, R. Egger, P. Zhang, X.S. Wang, Z.G. Chen, Opt. Express 18, 14679 (2010)

    Article  ADS  Google Scholar 

  22. A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow, U. Peschel, T. Pertsch, S. Nolte, F. Lederer, A. Tünnermann, New J. Phys. 10, 103020 (2008)

    Article  ADS  Google Scholar 

  23. Y. Kominis, K. Hizanidis, Phys. Rev. Lett. 102, 133903 (2009)

    Article  ADS  Google Scholar 

  24. K. Motzek, A.A. Sukhorukov, Yu.S. Kivshar, Opt. Lett. 31, 3125 (2006)

    Article  ADS  Google Scholar 

  25. D. Mihalache, D. Mazilu, F. Lederer, Yu.S. Kivshar, Opt. Lett. 32, 2091 (2007)

    Article  ADS  Google Scholar 

  26. P.P. Beličev, G. Gligorić, A. Maluckov, M. Stepić, Eur. Phys. Lett. 104, 14006 (2013)

    Article  ADS  Google Scholar 

  27. Y. Kubota, T. Odagaki, Phys. Rev. E 71, 016605 (2005)

    Article  ADS  Google Scholar 

  28. L. Pang, W. Nakagawa, Y. Fainman, Appl. Opt. 42, 5450 (2003)

    Article  ADS  Google Scholar 

  29. W. Krolikowski, Yu.S. Kivshar, J. Opt. Soc. Am. B 13, 876 (1996)

    Article  ADS  Google Scholar 

  30. S. Noda, M. Fujita, T. Asano, Nat. Photon 1, 449 (2007)

    Article  ADS  Google Scholar 

  31. R.W. Ziolkowski, M. Tanaka, Opt. Quant. Electron 31, 843 (1999)

    Article  Google Scholar 

  32. M. Maldovan, E.L. Thomas, Appl. Phys. B 83, 595 (2006)

    Article  ADS  Google Scholar 

  33. Y.Y. Li, W. Pang, Y.Z. Chen, Z.Q. Yu, J.Y. Zhou, H.R. Zhang, Phys. Rev. A 80, 043824 (2009)

    Article  ADS  Google Scholar 

  34. J.D. Wang, J.K. Yang, Z.G. Chen, Phys. Rev. A 76, 013828 (2007)

    Article  ADS  Google Scholar 

  35. A. Trombettoni, A. Smerzi, A.R. Bishop, Phys. Rev. E 67, 016607 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. V.A. Brazhnyi, M. Salerno, Phys. Rev. A 83, 053616 (2011)

    Article  ADS  Google Scholar 

  37. V.A. Brazhnyi, B.A. Malomed, Phys. Rev. A 83, 053844 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Kuzmanović, M. Stojanović Krasić, D. Milović, A. Radosavljević, G. Gligorić, A. Maluckov, M. Stepić, Phys. Scr. 90, 025505 (2015)

    Article  ADS  Google Scholar 

  39. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, M. Bashaw, Phys. Rev. A 50, R4457 (1994)

    Article  ADS  Google Scholar 

  40. M. Taya, M. Bashaw, M. Fejer, M. Segev, G.C. Valley, Phys. Rev. A 52, 3095 (1995)

    Article  ADS  Google Scholar 

  41. Z. Chen, M. Segev, D.W. Wilson, R.E. Muller, P.D. Maker, Phys. Rev. Lett. 78, 2948 (1997)

    Article  ADS  Google Scholar 

  42. M. Stepić, D. Kip, Lj. Hadžievski, and A. Maluckov, Phys. Rev. E 69, 066618 (2004).

    Article  ADS  Google Scholar 

  43. A. Radosavljević, G. Gligorić, A. Maluckov, M. Stepić, D. Milović, J. Opt. Soc. Am. B 30, 2340 (2013)

    Article  ADS  Google Scholar 

  44. M. Stepić, E. Smirnov, C.E. Rüter, L. Prönneke, D. Kip, V. Shandarov, Phys. Rev. E 74, 046614 (2006)

    Article  ADS  Google Scholar 

  45. Y. Tan, F. Chen, M. Stepić, V. Shandarov, D. Kip, Opt. Exp. 16, 10465 (2008)

    Article  ADS  Google Scholar 

  46. R. Guo, H.-Q. Hao, Commun. Nonlin. Sci. Numer. Simul. 18, 2426 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. A.A. Sukhorukov, Opt. Lett. 35, 989 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Maluckov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, S., Stojanović Krasić, M., Milović, D. et al. Light propagation inside ‘cavity’ formed between nonlinear defect and interface of two dissimilar one-dimensional linear photonic lattices. Eur. Phys. J. D 69, 207 (2015). https://doi.org/10.1140/epjd/e2015-60243-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60243-0

Keywords

Navigation