Skip to main content
Log in

A combined DFT/HREELS study of the vibrational modes of terphenylthiol SAMs

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Self-assembled monolayers of p-terphenylthiol (TPT, HS-(C6H4)2-C6H5) deposited onto gold can serve as model systems for aromatic lithography resists. Such thin molecular films are suitably probed using high resolution electron energy loss spectroscopy, due to its high surface sensitivity. Extended energy loss spectra were measured at different probing energies. The TPT monolayer overlapping ν(CH) stretching modes could be modelled by a single effective anharmonic oscillator sustained by a Morse potential energy curve, thanks to the resonant excitation of the associated overtone series at 6 eV. A remarkably good agreement was obtained between the TPT monolayer energy loss spectrum and the computer-simulated infrared vibrational spectrum of the isolated TPT molecule. Density Functional Theory calculations for TPT, fully deuterated TPT and benzenethiol isolated molecules were performed with the exchange correlation functional B3LYP and a dispersion correction, using a triple ζ+ polarisation basis set. By comparing the vibrational patterns obtained for these parent systems, (re-)assignments of all the features observed in the TPT self-assembled monolayer energy loss spectrum are discussed. The obtained vibrational assignments can be confidently transposed to other related systems, such as benzenethiol and biphenyl self-assembled monolayers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  Google Scholar 

  2. F. Schreiber, J. Phys.: Condens. Matter 16, R881 (2004)

    ADS  Google Scholar 

  3. P. Angelova, H. Vieker, N.-E. Weber, D. Matei, O. Reimer, I. Meier, S. Kurasch, J. Biskupek, D. Lorbach, K. Wunderlich, L. Chen, A. Terfort, M. Klapper, K. Müllen, U. Kaiser, A. Gölzhäuser, A. Turchanin, ACS Nano 7, 6489 (2013)

    Article  Google Scholar 

  4. N. Meyerbroeker, P. Waske, M. Zharnikov, J. Chem. Phys. 142, 101919 (2015)

    Article  ADS  Google Scholar 

  5. A. Turchanin, A. Gölzhäuser, Prog. Surf. Sci. 87, 108 (2012)

    Article  ADS  Google Scholar 

  6. Z. She, A. DiFalco, G. Hähner, M. Buck, Beilstein J. Nanotechnol. 3, 101 (2012)

    Article  Google Scholar 

  7. L. Kong, F. Chesneau, Z. Zhang, F. Staier, A. Terfort, P.A. Dowben, M. Zharnikov, J. Phys. Chem. C 115, 22422 (2011)

    Article  Google Scholar 

  8. R. Arnold, W. Azzam, A. Terfort, C. Wöll, Langmuir 18, 3980 (2002)

    Article  Google Scholar 

  9. P. Waske, T. Wächter, A. Terfort, M. Zharnikov, J. Phys. Chem. C 118, 26049 (2014)

    Article  Google Scholar 

  10. J. Scharf, H.H. Strehblow, B. Zeysing. A. Terfort, J. Solid State Electrochem. 5, 396 (2001)

    Article  Google Scholar 

  11. L. Amiaud, J. Houplin, M. Bourdier, V. Humblot, R. Azria, C.-M. Pradier, A. Lafosse, Phys. Chem. Chem. Phys. 16, 1050 (2014)

    Article  Google Scholar 

  12. S.Y. Lee, Bull. Korean Chem. Soc. 19, 93 (1998)

    Google Scholar 

  13. S. Frey, V. Stadler, K. Heister, W. Eck, M. Zharnikov, M. Grunze, Langmuir 17, 2408 (2001)

    Article  Google Scholar 

  14. C. Fuxen, W. Azzam, R. Arnold, G. Witte, A. Terfort, C. Wöll, Langmuir 17, 3689 (2001)

    Article  Google Scholar 

  15. H.-J. Himmel, A. Terfort, C. Wöll, J. Am. Chem. Soc. 120, 12069 (1998)

    Article  Google Scholar 

  16. ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  17. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  18. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  19. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Article  Google Scholar 

  20. J. Poater, M. Solà, F.M. Bickelhaupt, Chem. Eur. J. 12, 2889 (2006)

    Article  Google Scholar 

  21. V.V. Korolkov, S. Allen, C.J. Roberts, S.J.B. Tendler, J. Phys. Chem. C 115, 14899 (2011)

    Article  Google Scholar 

  22. G. Heimel, L. Romaner, J.-L. Brédas, E. Zojer, Surf. Sci. 600, 4548 (2006)

    Article  ADS  Google Scholar 

  23. P. Bordat, R. Brown, Chem. Phys. 246, 323 (1999)

    Article  ADS  Google Scholar 

  24. D.J. Goossens, M.J. Gutmann, Phys. Rev. Lett. 102, 015505 (2009)

    Article  ADS  Google Scholar 

  25. G.D. Waddill, L.L. Kesmodel, Phys. Rev. B 32, 2107 (1985)

    Article  ADS  Google Scholar 

  26. P. Swiderek, A. Mann, J. Electron. Spectrosc. Rel. Phenom. 122, 37 (2002)

    Article  Google Scholar 

  27. P. Swiderek, H. Winterling, H. Ibach, Chem. Phys. Lett. 280, 556 (1997)

    Article  ADS  Google Scholar 

  28. B. Göötz, O. Kröhl, P. Swiderek, J. Electron. Spec. Related Phenom. 114, 569 (2001)

    Article  Google Scholar 

  29. J. Houplin, L. Amiaud, C. Dablemont, A. Lafosse, submitted to Phys. Chem. Chem. Phys.

  30. P.W. Atkins, in Physical Chemistry, 6th edn. (Oxford University Press, 1998)

  31. Ph. Avouris, J.E. Demuth, J. Chem. Phys. 75, 5953 (1981)

    Article  ADS  Google Scholar 

  32. H. Okuyama, S. Thachepan, T. Aruga, T. Ando, M. Nishijima, Chem. Phys. Lett. 381, 535 (2003)

    Article  ADS  Google Scholar 

  33. Q. Chen, B.G. Frederick, N.V. Richardson, J. Chem. Phys. 108, 5942 (1998)

    Article  ADS  Google Scholar 

  34. G.E. Davico, V.M. Bierbaum, C.H. DePuy, G.B. Ellison, R.R. Squires, J. Am. Chem. Soc. 117, 2590 (1995)

    Article  Google Scholar 

  35. S. Rashev, J. Phys. Chem. A 105, 6499 (2001)

    Article  Google Scholar 

  36. B.R. Henry, W. Siebrand, J. Chem. Phys. 49, 5369 (1968)

    Article  ADS  Google Scholar 

  37. A. Lafosse, R. Azria, Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces, eds. P. aČ´rsky, R. Čurík (CRC Press Taylor & Francis Group, 2012), Chap. 7

  38. E.J. Sturrock, Q. Chen, P.H. Borchardt, N.V. Richardson, J. Electron. Spectrosc. Related Phenom. 135, 127 (2004)

    Article  Google Scholar 

  39. M. Zharnikov, M. Grunze, J. Phys.: Condens. Matter 13, 11333 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Lafosse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houplin, J., Amiaud, L., Sedzik, T. et al. A combined DFT/HREELS study of the vibrational modes of terphenylthiol SAMs. Eur. Phys. J. D 69, 217 (2015). https://doi.org/10.1140/epjd/e2015-60240-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60240-3

Keywords

Navigation