Skip to main content
Log in

Synthesis of fast qudit gates by a train of coincident pulses

The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose an exact analytical method for the production of fast quantum gates in a system of d degenerate states, using a technique of a train of coincident pulses. It is an alternative to the adiabatic passage technique. This study exploits the Morris-Shore transformation and generalized quantum Householder reflection in which each of Householder reflection is implemented by n + m (n and m are arbitrary integers) sets of coincident pulses. Decoherence due to the population of the upper state is efficiently suppressed as the number of pulse sets (n and m) increases. It is remarkable that the upper state population is damped considerably, even for a small number of pulse sets, despite the fact that all the fields applied were on resonance with their transitions. In this method, simple Gaussian pulses with minimal pulse areas were used, which is easy to achieve experimentally. As a case study to validate the method, we implement the quantum Fourier transform in qutrit and ququad by a proper pulse train.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000)

  2. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer-Verlag, Berlin, 2000)

  3. S.S. Bullock, D.P. O’Leary, G.K. Brennen, Phys. Rev. Lett. 94, 230502 (2005)

    Article  ADS  Google Scholar 

  4. A. Muthukrishnan, C.R. Stroud, Phys. Rev. A 62, 052309 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  5. P.A. Ivanov, E.S. Kyoseva, N.V. Vitanov, Phys. Rev. A 74, 022323 (2006)

    Article  ADS  Google Scholar 

  6. E.S. Kyoseva, N.V. Vitanov, Phys. Rev. A 73, 023420 (2006)

    Article  ADS  Google Scholar 

  7. A.S. Householder, J. ACM 5, 339 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. N.V. Vitanov, Phys. Rev. A 85, 032331 (2012)

    Article  ADS  Google Scholar 

  9. U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, J. Chem. Phys. 92, 5363 (1990)

    Article  ADS  Google Scholar 

  10. N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001)

    Article  ADS  Google Scholar 

  11. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001)

    Article  ADS  Google Scholar 

  12. Z. Kis, F. Renzoni, Phys. Rev. A 65, 032318 (2002)

    Article  ADS  Google Scholar 

  13. N. Sangouard, X. Lacour, S. Guérin, H.R. Jauslin, Phys. Rev. A 72, 062309 (2005)

    Article  ADS  Google Scholar 

  14. Z.J. Deng, K.L. Gao, M. Feng, J. Phys. B 40, 351 (2007)

    Article  ADS  Google Scholar 

  15. B. Rousseaux, S. Guérin, N.V. Vitanov, Phys. Rev. A 87, 032328 (2013)

    Article  ADS  Google Scholar 

  16. A.A. Rangelov, N.V. Vitanov, Phys. Rev. A 85, 043407 (2012)

    Article  ADS  Google Scholar 

  17. E.A. Shapiro, V. Milner, C. Menzel-Jones, M. Shapiro, Phys. Rev. Lett. 99, 033002 (2007)

    Article  ADS  Google Scholar 

  18. S. Zhdanovich, E.A. Shapiro, M. Shapiro, J.W. Hepburn, V. Milner, Phys. Rev. Lett. 100, 103004 (2008)

    Article  ADS  Google Scholar 

  19. M. Amniat-Talab, M. Saadati-Niari, J. Mod. Opt. 61, 877 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Saadati-Niari, M. Amniat-Talab, J. Mod. Opt. 61, 1492 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. D.F.V. James, Appl. Phys. B 66, 181 (1998)

    Article  ADS  Google Scholar 

  22. P.A. Ivanov, N.V. Vitanov, Phys. Rev. A 77, 012335 (2008)

    Article  ADS  Google Scholar 

  23. M. Amniat-Talab, M. Saadati-Niari, S. Guérin, Eur. Phys. J. D 66, 216 (2012)

    Article  ADS  Google Scholar 

  24. J.R. Morris, B.W. Shore, Phys. Rev. A 27, 906 (1983)

    Article  ADS  Google Scholar 

  25. A.A. Rangelov, N.V. Vitanov, B.W. Shore, Phys. Rev. A 74, 053402 (2006)

    Article  ADS  Google Scholar 

  26. B.W. Shore, J. Mod. Opt, 61, 787 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Amniat-Talab, M. Saadati-Niari, S. Guérin, R. Nader-Ali, Phys. Rev. A 83, 013817 (2011)

    Article  ADS  Google Scholar 

  28. J.H. Wilkinson, Comput. J. 3, 23 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  29. D.T. Pegg, W.R. Macgillivary, Opt. Commun. 59, 113 (1986)

    Article  ADS  Google Scholar 

  30. N.V. Vitanov, J. Phys. B 31, 709 (1998)

    Article  ADS  Google Scholar 

  31. L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  32. S.S. Ivanov, P.A. Ivanov, N.V. Vitanov, Phys. Rev. A 78, 030301(R) (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maghsoud Saadati-Niari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amniat-Talab, M., Saadati-Niari, M. Synthesis of fast qudit gates by a train of coincident pulses. Eur. Phys. J. D 69, 215 (2015). https://doi.org/10.1140/epjd/e2015-60238-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60238-9

Keywords

Navigation