Skip to main content
Log in

Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article we report the usage of (1) ΦX174 dsDNA as a model for electron – DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. C. von Sonntag, Free-radical-induced DNA damage and its repair, A chemical perspective (Springer-Verlag, Berlin, Heidelberg, 2006)

  2. S.M. Pimblott, J.A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007)

    Article  ADS  Google Scholar 

  3. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    Article  ADS  Google Scholar 

  4. J. Kopyra, Phys. Chem. Chem. Phys. 14, 8287 (2012)

    Article  Google Scholar 

  5. H. Abdoul-Carime, P. Cloutier, L. Sanche, Rad. Res. 155, 625 (2001)

    Article  Google Scholar 

  6. S. Ptasińska, L. Sanche, J. Chem. Phys. 125, 144713 (2006)

    Article  ADS  Google Scholar 

  7. S.V.K. Kumar, T. Pota, D. Peri, A.D. Dongre, B.J. Rao, J. Chem. Phys. 137, 045101 (2012)

    Article  ADS  Google Scholar 

  8. B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  9. Y. Zheng, L. Sanche, Rev. Nanosci. Nanotechnol. 2, 1 (2013) and references cited therein

    Article  Google Scholar 

  10. E. Alizadeh, L. Sanche, Eur. Phys. J. D 68, 97 (2014)

    Article  ADS  Google Scholar 

  11. T. Solomun, C. Hultschig, E. Illenberger, Eur. Phys. J. D 35, 437 (2005)

    Article  ADS  Google Scholar 

  12. T.M. Orlando, D. Oh, Y. Chen, A.B. Aleksandrov, J. Chem. Phys. 128, 195102 (2008)

    Article  ADS  Google Scholar 

  13. S.G. Ray, S.S. Daube, R. Naaman, Proc. Natl. Acad. Sci. USA 102, 15 (2005)

    Article  ADS  Google Scholar 

  14. C.A. Hunniford, D.J. Timson, R.J.H. Davies, R.W. McCullough, Phys. Med. Biol. 52, 3729 (2007)

    Article  Google Scholar 

  15. Yong Zhao, Zheng Tan, Yan-hua Du, Guan-ying Qiu, Nucl. Instrum. Methods B 211, 211 (2003)

    Article  ADS  Google Scholar 

  16. D. Minh Hông, Ph. D. Thesis, Rijksuniversiteit Groningen, The Netherlands, 2010

  17. O. Boulanouar, M. Fromm, A.D. Bass, P. Cloutier, L. Sanche, J. Chem. Phys. 139, 055104 (2013)

    Article  ADS  Google Scholar 

  18. J.A. Wyer, K.T. Butterworth, D.G. Hirst, C.J. Latimer, E.C. Montenegro, M.B. Shah, F.J. Currell, Phys. Med. Biol. 54, 4705 (2009)

    Article  Google Scholar 

  19. P. Thopan, P. Thongkumkoon, K. Prakrajang, D. Suwannakachorn, L.D. Yu, Nucl. Instrum. Methods B 326, 200 (2014)

    Article  ADS  Google Scholar 

  20. Qianhong Bao, Yunfeng Chen, Yi Zheng, Leìon Sanche, J. Phys. Chem. C 118, 15516 (2014)

    Article  Google Scholar 

  21. M.A. Śmiałek, N.C. Jones, R. Balog, N.J. Mason, D. Field, Eur. Phys. J. D 62, 197 (2011)

    Article  ADS  Google Scholar 

  22. M.A. Śmiałek, R. Balog, N.C. Jones, D. Field, N.J. Mason, Eur. Phys. J. D 60, 31 (2010)

    Article  ADS  Google Scholar 

  23. M. Rezaee, D.J. Hunting, L. Sanche, Int. J. Rad. Oncol. Biol. Phys. 87, 847 (2013)

    Article  Google Scholar 

  24. M. Rezaee, E. Alizadeh, P. Cloutier, D.J. Hunting, L. Sanche, Chem. Med. Chem. 9, 1145 (2014)

    Article  Google Scholar 

  25. A. Dumont, Y. Zheng, D. Hunting, L. Sanche, J. Chem. Phys. 132, 045102 (2010)

    Article  ADS  Google Scholar 

  26. Y. Zheng, L. Sanche, J. Chem. Phys. 133, 155102 (2010)

    Article  ADS  Google Scholar 

  27. Xinglan Luo, Y. Zheng, L. Sanche, J. Chem. Phys. 140, 155101 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.V.K. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Murali, M. & Kushwaha, P. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA. Eur. Phys. J. D 69, 204 (2015). https://doi.org/10.1140/epjd/e2015-60203-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60203-8

Keywords

Navigation