Skip to main content
Log in

Classical microscopic theory of dispersion, emission and absorption of light in dielectrics

Classical microscopic theory of dielectric susceptibility

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lerose, A. Sanzeni, A. Carati, L. Galgani, Eur. Phys. J. D 68, 35 (2014)

    Article  ADS  Google Scholar 

  2. G. Grosso, G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, London, 2014)

  3. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford U.P., Oxford, 1951)

  4. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  5. P.P. Ewald, Ann. Phys. 49, 1 (1916)

    Article  Google Scholar 

  6. W. Oseen, Ann. Phys. 48, 1 (1915)

    Article  Google Scholar 

  7. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1959)

  8. A. Carati, L. Galgani, Nuovo Cimento B 118, 839 (2003)

    ADS  Google Scholar 

  9. M. Marino, A. Carati, L. Galgani, Ann. Phys. 322, 799 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. M.D. Green, J. Chem. Phys. 22, 398 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.H. Van Vleck, D.L. Huber, Rev. Mod. Phys. 49, 939 (1977)

    Article  ADS  Google Scholar 

  13. A. Carati, J. Stat. Phys. 128, 1057 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. A. Carati, A. Maiocchi, Commun. Math. Phys. 314, 129 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. A. Maiocchi, D. Bambusi, A. Carati, J. Stat. Phys. 155, 300 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. A. Carati, L. Galgani, A. Giogilli, S. Paleari, Phys. Rev. E 76, 022104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Carati, F. Benfenati, A. Maiocchi, M. Zuin, L. Galgani, Chaos 24, 013118 (2014)

    Article  ADS  Google Scholar 

  18. P. Drude, The Theory of Optics (Dover, New York, 1950)

  19. P. Drude, Lehrbuch der Optik (Leipzig, 1900)

  20. H.A. Lorentz, The Theory of Electrons (Dover, New York, 1952)

  21. H.A. Lorentz, The Theory of Electrons, 1st edn. (Dover, New York, 1906)

  22. M. Born, Optik (Springer, Berlin, 1933)

  23. J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford U.P., Oxford, 1932)

  24. S.R. de Groot, The Maxwell Equations (North-Holland, Amsterdam, 1969)

  25. S.R. de Groot, L.G, Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972)

  26. J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936)

    Article  ADS  Google Scholar 

  27. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  28. C.W. Oseen, Phys. Z. 17, 341 (1916)

    Google Scholar 

  29. G.Jaffè, Dispersion und Absorption, in Handbuch der Experimentalphysik (Akademische Verlaggesellshaft, Leipzig, 1928)

  30. R.L. Kronig, J. Opt. Soc. Am. 12, 57 (1926)

    Article  Google Scholar 

  31. J.H. Van Vleck, Phys. Rev. 24, 330 (1924)

    Article  ADS  Google Scholar 

  32. P.A.M. Dirac, Proc. Roy. Soc. A 167, 148 (1938)

    Article  ADS  Google Scholar 

  33. A.I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)

  34. V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations (Dover, New York, 1989)

  35. A.S. Besicovitch, Almost Periodic Functions (Dover, New York, 1954)

  36. N. Bohr, H.A. Kramers, J.C. Slater, Phil. Mag. 47, 785 (1924), reprinted in B.L. Van der Waerden, Sources of Quantum Mechanics (Dover, New York, 1967)

    Article  Google Scholar 

  37. W. Pauli, Optics and the Theory of Electrons (Dover, New York, 1973)

  38. E. Nelson, Quantum Fluctuations (Princeton U.P., Princeton, 1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carati, A., Galgani, L. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Eur. Phys. J. D 68, 307 (2014). https://doi.org/10.1140/epjd/e2014-50549-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50549-8

Keywords

Navigation