Skip to main content

Advertisement

Log in

Accurate adiabatic potential energy surface for 12A′ state of FH2 based on ab initio data extrapolated to the complete basis set limit

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. It is obtained by using the aug-cc-pVTZ and aug-cc-pVQZ basis sets with extrapolation of the electron correlation energy to the complete basis set limit, plus extrapolation to the complete basis set limit of the complete-active-space self-consistent field energy. The collinear and bending barrier heights of the new global potential energy surface is 2.301 and 1.768 kcal mol-1, in very good agreement with the values of 2.222 and 1.770 kcal mol-1 from the current best potential energy surface. In particular, the new potential energy surface describes well the important van der Waals interactions which is very useful for investigating the dynamics of the title system. Thus, the new potential energy surface can both be recommended for dynamics studies of the F + H2 reaction and as building block for constructing the potential energy surfaces of larger fluorine/hydrogen containing systems. Based on the new potential energy surface, a preliminary theoretical study of the reaction F(2P) + H2 (X1 Σ g +) → FH(X 1 Σ +) + H(2S) has been carried out with the methods of quasi-classical trajectory and quantum mechanical. The results have shown that the new PES is suitable for any kind of dynamics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Cardoen, J. Simons, R.J. Gdanitz, Int. J. Quantum Chem. 106, 1516 (2006)

    Article  ADS  Google Scholar 

  2. J.H. Parker, G.E. Pimentel, J. Chem. Phys. 51, 91 (1969)

    Article  ADS  Google Scholar 

  3. T.P. Schafer, P.E. Siska, J.M. Parson, F.P. Tully, Y.C. Wong, Y.T. Lee, J. Chem. Phys. 55, 3385 (1970)

    Article  ADS  Google Scholar 

  4. J.C. Polanyi, K.B. Woodall, J. Chem. Phys. 57, 1574 (1972)

    Article  ADS  Google Scholar 

  5. R.D. Coombe, G.C. Pimentel, J. Chem. Phys. 59, 251 (1973)

    Article  ADS  Google Scholar 

  6. E. Wurzberg, P.L. Houston, J. Chem. Phys. 72, 4811 (1980)

    Article  ADS  Google Scholar 

  7. W.H. Miller, B.M.D.D. Jansen op de Haar, J. Chem. Phys. 86, 6213 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.Z.H. Zhang, S.I. Chu, W.H. Miller, J. Chem. Phys. 88, 6233 (1988)

    Article  ADS  Google Scholar 

  9. D.W. Schwenke, K. Haug, D.G. Truhlar, Y. Sun, J.Z.H. Zhang, D.J. Kouri, J. Phys. Chem. 91, 6080 (1987)

    Article  Google Scholar 

  10. D.W. Schwenke, K. Haug, M. Zhao, D.G. Truhlar, Y. Sun, J.Z.H. Zhang, D.J. Kouri, J. Chem. Phys. 92, 3202 (1988)

    Article  Google Scholar 

  11. D.E. Manolopoulos, R.E. Wyatt, Chem. Phys. Lett. 152, 23 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.E. Manolopoulos, M. D’Mello, R.E. Wyatt, J. Chem. Phys. 91, 6096 (1989)

    Article  ADS  Google Scholar 

  13. D.E. Manolopoulos, M. D’Mello, R.E. Wyatt, J. Chem. Phys. 93, 403 (1993)

    Article  ADS  Google Scholar 

  14. M. Qiu, Z. Ren, L. Che, D. Dai, S.A. Harich, X. Wang, X. Yang, C. Xu, D. Dai, M. Gusatafsson, R.T. Skodje, Z. Sun, D.H. Zhang, Science 311, 1440 (2006)

    Article  ADS  Google Scholar 

  15. L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang, D.H. Zhang, X. Yang, L. Sheng, G. Li, H.-J. Werner, F. Lique, M.H. Alexander, Science 317, 1061 (2007)

    Article  ADS  Google Scholar 

  16. X. Wang, W. Dong, Z.R.M. Qiu, L. Che, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu, D.H. Zhang, Proc. Natl. Acad. Sci. USA 105, 6227 (2008)

    Article  ADS  Google Scholar 

  17. B. Fu, X. Xu, D.H. Zhang, J. Chem. Phys. 129, 011103 (2008)

    Article  ADS  Google Scholar 

  18. C.F. Bender, S.V. O’Neill, P.K. Pearson, H.F. Schaefer III, Science 176, 1412 (1972)

    Article  ADS  Google Scholar 

  19. H.F. Schaefer III, J. Phys. Chem. 89, 5336 (1985)

    Article  Google Scholar 

  20. F.B. Brown, R. Steckler, D.W. Schwenke, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 82, 188 (1985)

    Article  ADS  Google Scholar 

  21. R. Steckler, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 82, 5499 (1985)

    Article  ADS  Google Scholar 

  22. D.W. Schwenke, R. Steckler, F.B. Brown, D.G. Truhlar, J. Chem. Phys. 84, 5706 (1986)

    Article  ADS  Google Scholar 

  23. D.W. Schwenke, R. Steckler, F.B. Brown, D.G. Truhlar, J. Chem. Phys. 86, 2443 (1987)

    Article  ADS  Google Scholar 

  24. G. Lynch, R. Steckler, D.W. Schwenke, A.J.C. Varandas, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 94, 7136 (1991)

    Article  ADS  Google Scholar 

  25. S.L. Mielke, G.C. Lynch, D.G. Truhlar, D.W. Schwenke, Chem. Phys. Lett. 213, 10 (1993)

    Article  ADS  Google Scholar 

  26. A.J.C. Varandas, Adv. Chem. Phys. 74, 255 (1988)

    Google Scholar 

  27. A.J.C. Varandas, Chem. Phys. Lett. 194, 333 (1992)

    Article  ADS  Google Scholar 

  28. A.J.C. Varandas, in Reaction and Molecular Dynamics, Lecture Notes in Chemistry, edited by A. Laganá, A. Riganelli (Springer, Berlin, 2000), Vol. 75, p. 33

  29. A.J.C. Varandas, in Conical Intersections: Electronic Structure, Spectroscopy and Dynamics, Advanced Series in Physical Chemistry (World Scientific Publishing, 2004), Chap. 5, p. 91

  30. C.W. Bauschlicher Jr., S.P. Walch, S.R. Langhoff, P.R. Taylor, R.L. Jaffe, J. Chem. Phys. 88, 1743 (1988)

    Article  ADS  Google Scholar 

  31. K. Stark, H.-J. Werner, J. Chem. Phys. 104, 6515 (1996)

    Article  ADS  Google Scholar 

  32. C. Xu, D. Xie, D.H. Zhang, Chin. J. Chem. Phys. 19, 96 (2006)

    Article  Google Scholar 

  33. G. Li, H.-J. Werner, F. Lique, M.H. Alexander, J. Chem. Phys. 127, 174302 (2007)

    Article  ADS  Google Scholar 

  34. C.F. Bender, P.K. Pearson, S.V. O’Neil, H.F. Schaefer III, J. Chem. Phys. 56, 4626 (1972)

  35. R. Steckler, D.W. Schwenke, F.B. Brown, D.G. Truhlar, Chem. Phys. Lett. 121, 475 (1985)

    Article  ADS  Google Scholar 

  36. R. Gonzalez-Luque, M. Merchan, B.O. Roos, Chem. Phys. 171, 107 (1993)

    Article  ADS  Google Scholar 

  37. H.-J. Werner, M. Kállay, J. Gauss, J. Chem. Phys. 128, 034305 (2008)

    Article  ADS  Google Scholar 

  38. M.J. Frisch, B. Lin, J.S. Binkley, H.F. Schaefer III, W.H. Miller, Chem. Phys. Lett. 114, 1 (1985)

    Article  ADS  Google Scholar 

  39. G.E. Scuseria, H.F. Schaefer III, J. Chem. Phys. 88, 7024 (1988)

    Article  ADS  Google Scholar 

  40. D.R. Garmer, J.B. Anderson, J. Phys. Chem. 89, 3050 (1988)

    Article  Google Scholar 

  41. Y.Q. Li, J.C. Yuan, M.D. Chen, F.C. Ma, M.T. Sun, J. Comput. Chem. 34, 1686 (2013)

    Article  Google Scholar 

  42. S.P.J. Rodrigues, A.C.G. Fontes, Y.Q. Li, A.J.C. Varandas, Chem. Phys. Lett. 516, 17 (2011)

    Article  ADS  Google Scholar 

  43. Y.Q. Li, A.J.C. Varandas, J. Phys. Chem. A 114, 9644 (2010)

    Article  Google Scholar 

  44. Y.Q. Li, A.J.C. Varandas, Int. J. Quantum Chem. 112, 2932 (2012)

    Article  Google Scholar 

  45. Y.Q. Li, F.C. Ma, M.T. Sun, J. Chem. Phys. 139, 154305 (2013)

    Article  ADS  Google Scholar 

  46. A.J.C. Varandas, J.L. Llanio-Trujillo, Chem. Phys. Lett. 356, 585 (2002)

    Article  ADS  Google Scholar 

  47. A.J.C. Varandas, H.G. Yu, Mol. Phys. 91, 301 (1997)

    Article  ADS  Google Scholar 

  48. M.Y. Ballester, A.J.C. Varandas, Phys. Chem. Chem. Phys. 7, 2305 (2005)

    Article  Google Scholar 

  49. Y.Q. Li, A.J.C. Varandas, J. Phys. Chem. A 114, 6669 (2010)

    Article  Google Scholar 

  50. Y.Q. Li, Y.Z. Song, P. Song, Y.Z. Li, Y. Ding, M.T. Sun, F.C. Ma, J. Chem. Phys. 136, 194705 (2012)

    Article  ADS  Google Scholar 

  51. L.A. Poveda, M. Biczysko, A.J.C. Varandas, J. Chem. Phys. 131, 044309 (2009)

    Article  ADS  Google Scholar 

  52. A.J.C. Varandas, L. Zhang, Chem. Phys. Lett. 331, 474 (2000)

    Article  ADS  Google Scholar 

  53. A.J.C. Varandas, L. Zhang, Chem. Phys. Lett. 385, 409 (2004)

    Article  ADS  Google Scholar 

  54. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  55. A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007)

    Article  ADS  Google Scholar 

  56. A.J.C. Varandas, J. Chem. Phys. 127, 114316 (2007)

    Article  ADS  Google Scholar 

  57. H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  58. P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)

    Article  ADS  Google Scholar 

  59. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, version 2010.1, a package of ab initio programs (2010)

  60. A. Karton, J.M.L. Martin, Theoret. Chim. Acta 115, 330 (2006)

    Article  Google Scholar 

  61. T. Helgaker, W. Klopper, H. Koch, J. Noga, J. Chem. Phys. 106, 9639 (1997)

    Article  ADS  Google Scholar 

  62. A.J.C. Varandas, J. Chem. Phys. 113, 8880 (2000)

    Article  ADS  Google Scholar 

  63. A.J.C. Varandas, J. Chem. Phys. 131, 124128 (2009)

    Article  ADS  Google Scholar 

  64. A.J.C. Varandas, L.A. Poveda, Theor. Chem. Acc. 116, 404 (2006)

    Article  Google Scholar 

  65. L.A. Poveda, A.J.C. Varandas, Phys. Chem. Chem. Phys. 7, 2867 (2005)

    Article  Google Scholar 

  66. A.J.C. Varandas, J.D. Silva, J. Chem. Soc. Faraday Trans. 88, 941 (1992)

    Article  Google Scholar 

  67. A.J.C. Varandas, J. Mol. Struct. Theochem. 120, 401 (1985)

    Article  Google Scholar 

  68. A.J.C. Varandas, J. Chem. Phys. 105, 3524 (1996)

    Article  ADS  Google Scholar 

  69. A.J.C. Varandas, S.P.J. Rodrigues, J. Phys. Chem. A 110, 485 (2006)

    Article  Google Scholar 

  70. E. Martínez-Núñez, A.J.C. Varandas, J. Phys. Chem. A 105, 5923 (2001)

    Article  Google Scholar 

  71. A.J.C. Varandas, J.N. Murrell, Faraday Discuss. Chem. Soc. 62, 92 (1977)

    Article  Google Scholar 

  72. A.J.C. Varandas, J.N. Murrell, Chem. Phys. Lett. 88, 440 (1981)

    Article  ADS  Google Scholar 

  73. M.R. Pastrana, L.A.M. Quintales, J. Brandão, A.J.C. Varandas, J. Phys. Chem. 94, 8073 (1990)

    Article  Google Scholar 

  74. P. Botschwina, W. Meyer, Chem. Phys. 8420, 20 (1977)

    Google Scholar 

  75. W.R. Wadt, N.W. Winter, J. Chem. Phys. 67, 3068 (1977)

    Article  ADS  Google Scholar 

  76. W.R. Wadt, N.W. Winter, J. Chem. Phys. 84, 192 (1986)

    Article  Google Scholar 

  77. A.J.C. Varandas, J. Chem. Phys. 70, 3786 (1979)

    Article  ADS  Google Scholar 

  78. V. Aquilanti, R. Candori, D. Cappelletti, E. Luzzatti, F. Pirani, Chem. Phys. 145, 293 (1990)

    Article  ADS  Google Scholar 

  79. A.J.C. Varandas, Chem. Phys. Lett. 138, 455 (1987)

    Article  ADS  Google Scholar 

  80. K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996)

    Article  ADS  Google Scholar 

  81. M.D. Chen, K.L. Han, N.Q. Lou, J. Chem. Phys. 118, 4463 (2003)

    Article  ADS  Google Scholar 

  82. Z.G. Sun, H. Guo, D.H. Zhang, J. Chem. Phys. 132, 084112 (2010)

    Article  ADS  Google Scholar 

  83. Z.G. Sun, S.Y. Lee, H. Guo, D.H. Zhang, J. Chem. Phys. 130, 174102 (2009)

    Article  ADS  Google Scholar 

  84. T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)

    Article  Google Scholar 

  85. T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008)

    Article  Google Scholar 

  86. T.S. Chu, K.L. Han, J. Phys. Chem. A 109, 2050 (2005)

    Article  Google Scholar 

  87. R.F. Lu, T.S. Chu, Y. Zhang, K. Han, A.J.C. Varandas, J.Z.H. Zhang, J. Chem. Phys. 125, 133108 (2006)

    Article  ADS  Google Scholar 

  88. T.S. Chu, K.L. Han, A.J.C. Varandas, J. Phys. Chem. A 110, 1666 (2006)

    Article  Google Scholar 

  89. A.J.C. Varandas, T.S. Chu, K.L. Han, P.J.S.B. Caridade, Chem. Phys. Lett. 421, 415 (2006)

    Article  ADS  Google Scholar 

  90. P.Y. Zhang, S.J. Lv, Commun. Comput. Chem. 1, 63 (2013)

    ADS  Google Scholar 

  91. J.Z.H. Zhang, W.H. Miller, J. Chem. Phys. 91, 1528 (1989)

    Article  ADS  Google Scholar 

  92. E. Rosenman, S. Hochman-Kowal, A. Persky, M. Baer, J. Phys. Chem. 99, 16523 (1995)

    Article  Google Scholar 

  93. E. Rosenman, S. Hochman-Kowal, A. Persky, M. Baer, Chem. Phys. Lett. 239, 141 (1995)

    Article  ADS  Google Scholar 

  94. R.T. Skodje, D. Skouteris, D.E. Manolopoulos, S.-H. Lee, F. Dong, K. Liu, J. Chem. Phys. 112, 4536 (2000)

    Article  ADS  Google Scholar 

  95. G.M. Leies, Can. J. Phys. 37, 636 (1959)

    Article  Google Scholar 

  96. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979)

  97. K. Huber, G. Herzberg, in Constants of Diatomic Molecules in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2001), http://webbook.nist.gov

  98. M.H. Alexander, D.E. Manolopoulos, H.J. Werner, J. Chem. Phys. 113, 11084 (2000)

    Article  ADS  Google Scholar 

  99. G.E. Scuseria, J. Chem. Phys. 95, 7426 (1991)

    Article  ADS  Google Scholar 

  100. J.S. Wright, M. Kolbuszweski, R.E. Wyatt, J. Chem. Phys. 97, 8296 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Zhi Song.

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Song, YZ. & Varandas, A. Accurate adiabatic potential energy surface for 12A′ state of FH2 based on ab initio data extrapolated to the complete basis set limit. Eur. Phys. J. D 69, 22 (2015). https://doi.org/10.1140/epjd/e2014-50445-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50445-3

Keywords

Navigation