Skip to main content
Log in

Improvement of non-isobaric model for shock ignition

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, improved relations of total fuel energy, fuel gain, hot-spot radius and total areal density in a non-isobaric model of fuel assembly have been derived and compared with the numerical results of [J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010); S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, New J. Phys. 15, 045004 (2013)] and several simulations performed by MULTI-1D radiation hydrodynamic code for shock ignition scenario. Our calculations indicate that the approximations made by [M.D. Rosen, J.D. Lindl, A.R. Thiessen, LLNL Laser Program Annual Report, UCRL-50021-83, pp. 3–5 (1983); J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)] for the calculation of burn-up fraction are not accurate enough to give results consistent with simulations. Therefore, we have introduced more appropriate approximations for the burn-up fraction and total areal density of the fuel that are in more agreement with simulation results of shock ignition. Meanwhile, it is shown that the related formulas of the non-isobaric model for total fuel energy, fuel gain and also hot-spot radius cannot determine the model parameters independently, but improved model choose a better selection and less restrictions on determination of the parameters for the non-isobaric model. Such derivations can be used in theoretical studies of the ignition conditions and burn-up fraction of the fuel in shock ignition scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Zhou, R. Betti, Bull. Am. Phys. Soc. 50, 140 (2005)

    Google Scholar 

  2. R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Phys. Rev. Lett. 98, 155001 (2007)

    Article  ADS  Google Scholar 

  3. M.D. Rosen, J.D. Lindl, A.R. Thiessen, LLNL Laser Program Annual Report, UCRL-50021-83, 1983, pp. 3–5

  4. M.D. Rosen, Phys. Plasmas 6, 1690 (1999)

    Article  ADS  Google Scholar 

  5. S. Eliezer, M. Murakami, J.M. Martinez Val, Laser Part. Beams 25, 585 (2007)

    Article  Google Scholar 

  6. J. Meyer-ter-Vehn, Nucl. Fusion 22, 561 (1982)

    Article  Google Scholar 

  7. R. Kidder, Nucl. Fusion 16, 405 (1976)

    Article  ADS  Google Scholar 

  8. B. Canaud, M. Temporal, New J. Phys. 12, 043037 (2010)

    Article  ADS  Google Scholar 

  9. A.J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)

    Article  ADS  Google Scholar 

  10. M. Lafon, X. Ribeyre, G. Schurtz, Phys. Plasmas 17, 052704 (2010)

    Article  ADS  Google Scholar 

  11. S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, New J. Phys. 15, 045004 (2013)

    Article  ADS  Google Scholar 

  12. R. Ramis, R. Schmalz, J. Meyer-ter-Vehn, Comput. Phys. Commun. 49, 475 (1988)

    Article  ADS  Google Scholar 

  13. S. Atzeni, Phys. Plasmas 8, 3316 (1999)

    Article  ADS  Google Scholar 

  14. S. Atzeni, A. Schiavi, A. Marocchino, Plasma Phys. Control. Fusion 53, 035010 (2011)

    Article  ADS  Google Scholar 

  15. L.J. Perkins, R. Betti, K.N. Lafortune, W.H. Williams, Phys. Rev. Lett. 103, 045004 (2009)

    Article  ADS  Google Scholar 

  16. S. Atzeni, A. Marocchino, A. Schiavi, Phys. Plasmas 19, 090702 (2012)

    Article  ADS  Google Scholar 

  17. R. Ramis, MULTI-1D user’s manual – Version 2009, E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid (2012)

  18. A. Marocchino et al., Phys. Plasmas 20, 2702 (2013)

    Article  Google Scholar 

  19. A. Marocchino, S. Atzeni, A. Schiavi, Phys. Plasmas 21, 012701 (2014)

    Article  ADS  Google Scholar 

  20. R. Ramis, K. Eidmann, J. Meyer-ter-Vehn, S. Hulle, Comput. Phys. Commun. 183, 637 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  21. S.A. Ghasemi, A.H. Farahbod, S. Sobhanian, AIP Adv. 4, 077130 (2014)

    Article  ADS  Google Scholar 

  22. A.H. Farahbod, S.A. Ghasemi, Iranian J. Phys. Res. 12, 4 (2013)

    Google Scholar 

  23. S.A. Ghasemi, A.H. Farahbod, Iranian J. Phys. Res. 13, 4 (2013)

    Google Scholar 

  24. S.A. Ghasemi, A.H. Farahbod, Bull. Am. Phys. Soc. 58, 308 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abolfazl Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahbod, A., Ghasemi, S., Jafari, M. et al. Improvement of non-isobaric model for shock ignition. Eur. Phys. J. D 68, 314 (2014). https://doi.org/10.1140/epjd/e2014-50353-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50353-6

Keywords

Navigation