Skip to main content
Log in

Photophysical study of P3HT/NDI based hybrid nanoparticles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electron donor-acceptor based hybrid novel structure remains a frontier area of research to design optoelectronic, photovoltaic, and light harvesting devices. Here, we report the synthesis of interdyad and intradyad nanoparticles by using the electron donating polymer Poly-3-(hexylthiophine)) (P3HT) and the electron accepting molecule 1, 4, 5, 8 naphthalene tetracarboxylic diimide (NDI). The intradyad nanostructures are fabricated in situ by adding donor and acceptor molecules simultaneously whereas interdyad nanoparticles are fabricated by attaching the donor and acceptor nanoparticles electrostatically. The differential scanning calorimetry (DSC) confirms the segmental motion of the polymer chain and the uniform packing in intradyad nanostructures which is absent in the interdyad system. The photoluminescence quenching and the shortening of decay time of the excited state of the donor molecule were observed with increasing the concentration of acceptor molecule in the intradyad system which is attributed to the photoinduced electron transfer from donor to the acceptor molecule. However, in the case of the interdyad system, the change in photoluminescence quenching and the decay time is less significant due to different photophysical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Medintz, M.H. Stewart, S.A. Trammell, K. Susumu, J.B. Delehanty, B.C. Mei, J.S. Melinger, J.B. Blanco-Canosa, P.E. Dawson, H. Mattoussi, Nat. Mater. 9, 676 (2010)

    Article  ADS  Google Scholar 

  2. S. Satapathi, A. Kokil, B.H. Venkatraman, L. Li, D. Venkataraman, J. Kumar, IEEE Sensors J. 13, 2329 (2013)

    Article  Google Scholar 

  3. P. Howes, M. Green, A. Bowers, D. Parker, G. Varma, M. Kallumadil, M. Hughes, A. Warley, A. Brain, R. Botnar, J. Am. Chem. Soc. 132, 9833 (2010)

    Article  Google Scholar 

  4. N.A.A. Rahim, W. McDaniel, K. Bardon, S. Srinivasan, V. Vickerman, P.T.C. So, J.H. Moon, Adv. Mater. 21, 3492 (2009)

    Article  Google Scholar 

  5. C.F. Wu, S.J. Hansen, Q.O. Hou, J.B. Yu, M. Zeigler, Y.H. Jin, D.R. Burnham, J. McNeill, J.M. Olson, D.T. Chiu, Chem. Int. Ed. 50, 3430 (2011)

    Article  Google Scholar 

  6. D.G. de Oteyza, J.M. García-Lastra, M. Corso, B.P. Doyle, L. Floreano, A. Morgante, Y. Wakayama, A. Rubio, J.E. Ortega, Adv. Funct. Mater. 19, 3567 (2009)

    Article  Google Scholar 

  7. R. Otero, D. Écija, G. Fernández, J.M. Gallego, L. Sánchez, N. Martín, R. Miranda, Nano Lett. 7, 2602 (2007)

    Article  ADS  Google Scholar 

  8. M. Ruiz-Oses, D.G. de Oteyza, I. Fernandez-Torrente, N. Gonzalez-Lakunza, P.M. Schmidt-Weber, T. Kampen, K. Horn, A. Gourdon, A. Arnau, J.E. Ortega, Chem. Phys. Chem. 10, 896 (2009)

    Google Scholar 

  9. M. Bag, T.S. Gehan, D.D. Algaier, F. Liu, G. Nagarjuna, P.M. Lahti, T.P. Russell, D. Venkataraman, Adv. Mater. 25, 6411 (2013)

    Article  Google Scholar 

  10. D. Tuncel, H.V. Demir, Nanoscale 2, 484 (2010)

    Article  ADS  Google Scholar 

  11. C.F. Huebner, R.D. Roeder, S.H. Foulger, Adv. Funct. Mater. 19, 3604 (2009)

    Article  Google Scholar 

  12. G. Nagarjuna, D. Venkataraman, J. Polym. Sci. Part B 50, 1045 (2012)

    Article  Google Scholar 

  13. D. Venkataraman, S. Yurt, B.H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 1, 947 (2010)

    Article  Google Scholar 

  14. T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, U. Scherf, Nat. Mater. 2, 408 (2003)

    Article  ADS  Google Scholar 

  15. G. Nagarjuna, M. Baghgar, J.A. Labastide, D.D. Algaier, M.D. Barnes, D. Venkataraman, ACS Nano. 6, 10750 (2012)

    Google Scholar 

  16. J.A. Labastide, M. Baghgar, I. Dujovne, Y.P. Yang, A.D. Dinsmore, B.G. Sumpter, D. Venkataraman, M.D. Barnes, J. Phys. Chem. Lett. 2, 3085 (2011)

    Article  Google Scholar 

  17. L. Wang, E. Puodziukynaite, E.M. Grumstrup, A.C. Brown, S. Keinan, K.S. Schanze, J.R. Reynolds, J.M. Papanikolas, J. Phys. Chem. Lett. 4, 2269 (2013)

    Article  Google Scholar 

  18. J. Preat, J. Phys. Chem. C 114, 16716 (2010)

    Article  Google Scholar 

  19. P. Pingel, R. Schwarzl, D. Neher, Appl. Phys. Lett. 100, 143303 (2012)

    Article  ADS  Google Scholar 

  20. A.M. Ballantyne, L. Chen, J. Dane, T. Hammant, F.M. Braun, M. Heeney, W. Duffy, I. McCulloch, D.D.C. Bradley, J. Nelson, Adv. Funct. Mater. 18, 2373 (2008)

    Article  Google Scholar 

  21. A. Salleo, R.J. Kline, D.M. DeLongchamp, M.L. Chabinyc, Adv. Mater. 22, 3812 (2010)

    Article  Google Scholar 

  22. S. Erten, S. Alp, S. Icli, J. Photochem. Photobiol. A 175, 214 (2005)

    Article  Google Scholar 

  23. S. Bhattacharyya, B. Paramanik, S. Kundu, A. Patra, Chem. Phys. Chem. 13, 4155 (2012)

    Google Scholar 

  24. Y.M. Nam, J. Huh, W.H. Jo, Sol. Energy Mater. Sol. C 94, 1118 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Satapathi.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathi, S., Molla, M., Bhattacharyya, S. et al. Photophysical study of P3HT/NDI based hybrid nanoparticles. Eur. Phys. J. D 68, 350 (2014). https://doi.org/10.1140/epjd/e2014-50328-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50328-7

Keywords

Navigation