Skip to main content
Log in

Supermode resonances in a multi-core holey fiber-based sensor

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The propagation characteristics in a new multi-core holey fiber-based sensor are investigated using a finite element method. The fiber is made by an air hole in the center of the structure, six air holes which are placed at the vertices of a hexagon, two layers of air holes arranged in a hexagonal way between which two large air hole on the horizontal line, four or seven small air holes which are infiltrated between some small air holes and are inserted in a silica core which is surrounded by a gold layer, and by a water layer which can be considered infinite for the numerical model. The four supplementary holes impede the resonant interaction (0.595 μm) between one of the pair of twofold degenerate supermode with a plasmon mode from the previously published sensor structure and introduces two new supermodes in resonance with the plasmon modes when the loss matching (0.597 μm and 0.599 μm) conditions are satisfied. By adding only four air holes and enlarge the radius of two existing hole produces a stronger transmission loss (856.2 dB/cm and 937.5 dB/cm) of a guided supermode at the resonant coupling due to efficient interaction with a plasmon mode near the loss matching points. The advantages of the configuration with seven small air holes where there is a resonance between two supermodes, are a better spectral resolution and higher amplitude sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Popescu, N.N. Puscas, G. Perrone, J. Opt. Soc. Am. B 20, 3039 (2012)

    Article  ADS  Google Scholar 

  2. E. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, Photonic Crystals-Innovative Systems, Lasers and Waveguides (InTech, 2012), Chap. 6, pp. 81–96

  3. B. Shuai, L. Xia, Y. Zhang, D. Liu, Opt. Express 20, 5974 (2012)

    Article  MATH  ADS  Google Scholar 

  4. V.A. Popescu, Mod. Phys. Lett. B 26, 1250207 (2012)

    Article  ADS  Google Scholar 

  5. V.A. Popescu, Mod. Phys. Lett. B 27, 1350038 (2013)

    Article  ADS  Google Scholar 

  6. V.A. Popescu, N.N. Puscas, G. Perrone, Eur. Phys. J. D 67, 215 (2013)

    Article  ADS  Google Scholar 

  7. A. Hassani, M. Skorobogatiy, Opt. Express 14, 11616 (2006)

    Article  ADS  Google Scholar 

  8. M. Skorobogatiy, J. Sens. 524237, 1 (2009)

    Article  Google Scholar 

  9. J. Homola, Chem. Rev. 108, 462 (2008)

    Article  Google Scholar 

  10. A. Hassani, M. Skorobogatiy, J. Opt. Soc. Am. B 24, 1423 (2007)

    Article  ADS  Google Scholar 

  11. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, M. Skorobogatiy, Opt. Express 15, 11413 (2007)

    Article  ADS  Google Scholar 

  12. Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, Y. Zhang, Opt. Commun. 284, 4161 (2011)

    Article  ADS  Google Scholar 

  13. A.K. Sharma, Rajan, R.B.D. Gupta, Opt. Commun. 274, 320 (2007)

    Article  ADS  Google Scholar 

  14. R.K. Verma, A.K. Sharma, B.D. Gupta, Opt. Commun. 281, 1486 (2008)

    Article  ADS  Google Scholar 

  15. A.K. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1999)

  16. M. Daimon, A. Masumura, Appl. Opt. 46, 3811 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Appl. Opt. 22, 1099 (1983)

    Article  ADS  Google Scholar 

  18. A. Yariv, P. Yeh, Optical Electronics in Modern Communications (Oxford University, 2006)

  19. T. Holmgaard, S. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007)

    Article  ADS  Google Scholar 

  20. V.A. Popescu, J. Supercond. Nov. Magn. 25, 1 (2012)

    Article  Google Scholar 

  21. V.A. Popescu, N.N. Puscas, G. Perrone, J. Opt. Soc. Am. B 31, 1062 (2014)

    Article  ADS  Google Scholar 

  22. H. Odhner, D.T. Jacobs, J. Chem. Eng. Data 57, 166 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile A. Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A., Puscas, N.T. & Perrone, G. Supermode resonances in a multi-core holey fiber-based sensor. Eur. Phys. J. D 68, 229 (2014). https://doi.org/10.1140/epjd/e2014-50297-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50297-9

Keywords

Navigation