Skip to main content
Log in

Hamiltonian models for resonant wave-particle interaction processes in magnetized and inhomogeneous plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The kinetic theory of plasmas, based on the Vlasov-Poisson system of equations, can efficiently solve only some aspects of the extremely large panel of problems involving wave-particle and wave-wave interaction processes in plasmas. Therefore the dynamics of charged particles and waves has been modeled by other approaches as, for example, Hamiltonian models describing the self-consistent wave-particle and wave-wave interactions in homogeneous or inhomogeneous magnetized plasmas. Various physical problems could be efficiently studied by such methods, concerning nonlinear and turbulent stages of different instabilities of electron or ion distributions, wave packets’ saturation and particles fluxes’ relaxation processes, particle trapping and detrapping mechanisms by waves, wave-particle interactions at multiple resonances, quasilinear diffusion processes of particles in waves, wave turbulence in randomly inhomogeneous plasmas, acceleration of particles, wave focusing, scattering, reflection and decay, etc. In particular, the aim of the paper, after a brief description of such Hamiltonian models, is to present the most recent simulation results obtained when studying Langmuir turbulence in the presence of electron beams propagating in inhomogeneous plasmas as the solar wind, where random density fluctuations with average levels up to several percents of the background plasma density have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.N. Onishchenko, A.R. Linetski, N.G. Matsiborko, V.D. Shapiro, V.I. Shevchenko, J. Exp. Theor. Phys. Lett. 12, 281 (1970)

    Google Scholar 

  2. T.M. O’Neil, J.H. Winfrey, J.H. Malmberg, Phys. Fluids 14, 1204 (1971)

    Article  ADS  Google Scholar 

  3. H.E. Mynick, A.N. Kaufman, Phys. Fluids 21, 653 (1978)

    Article  ADS  MATH  Google Scholar 

  4. J.L. Tennyson, J.D. Meiss, P.J. Morrison, Physica D 71, 1 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D.F. Escande, in Large Scale Structures in Nonlinear Physics, Lecture Notes in Physics, edited by J.D. Fournier, P.L. Sulem (Springer, Berlin, 1991), p. 73

  6. Y. Elskens, D. Escande, Microscopic Dynamics of Plasmas and Chaos (IOP Publishing, Bristol, 2003)

  7. A. Volokitin, C. Krafft, Phys. Plasmas 11, 3165 (2004)

    Article  ADS  Google Scholar 

  8. C. Krafft, A. Volokitin, Ann. Geophys. 22, 2171 (2004)

    Article  ADS  Google Scholar 

  9. A. Zaslavsky, C. Krafft, A. Volokitin, Phys. Rev. E 73, 016406 (2006)

    Article  ADS  Google Scholar 

  10. A. Zaslavsky, C. Krafft, L. Gorbunov, A. Volokitin, Phys. Rev. E 77, 056407 (2008)

    Article  ADS  Google Scholar 

  11. C. Krafft, A. Volokitin, Phys. Plasmas 17, 102303 (2010)

    Article  ADS  Google Scholar 

  12. A. Volokitin, C. Krafft, Plasma Phys. Control. Fusion 54, 085002 (2012)

    Article  ADS  Google Scholar 

  13. C. Krafft, A. Volokitin, Phys. Lett. A 377, 1189 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.S. Volokitin, V.V. Krasnoselskikh, C. Krafft, E. Kuznetsov, AIP Conf. Proc. 1539, 78 (2013)

    Article  ADS  Google Scholar 

  15. C. Krafft, A.S. Volokitin, V.V. Krasnoselskikh, ApJ 778, 111 (2013)

    Article  ADS  Google Scholar 

  16. V.I. Karpman, J.P. Lynov, P. Michelsen, H.L. Pécseli, J.J. Rasmussen, V.A. Turikov, Phys. Fluids 23, 1782 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yu.A. Omelchenko, V.D. Shapiro, V.I. Shevchenko, M. Ashour-Abdalla, D. Schriver, J. Geophys. Res. 99, 965 (1994)

    Google Scholar 

  18. H.L. Berk, B.N. Breizman, M. Pekker, Plasma Phys. Rep. 23, 778 (1997)

    ADS  Google Scholar 

  19. D.F. Escande, Y. Elskens, Phys. Lett. A 302, 110 (2002)

    Article  ADS  Google Scholar 

  20. A. Volokitin, C. Krafft, Phys. Lett. A 336, 193 (2005)

    Article  ADS  Google Scholar 

  21. C. Krafft, A. Volokitin, A. Zaslavsky, Phys. Plasmas 12, 112309 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Krafft, A. Volokitin, Phys. Plasmas 13, 122301 (2006)

    Article  ADS  Google Scholar 

  23. A. Zaslavsky, C. Krafft, A. Volokitin, Phys. Plasmas 14, 122302 (2007)

    Article  ADS  Google Scholar 

  24. C. Krafft, A. Volokitin, A. Zaslavsky, Phys. Rev. E 82, 066402 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Krafft, A. Volokitin, Phys. Rev. E 87, 053107 (2013)

    Article  ADS  Google Scholar 

  26. A. Volokitin, C. Krafft, G. Matthieussent, Phys. Plasmas 4, 4126 (1997)

    Article  ADS  Google Scholar 

  27. J.R. Cary, I. Doxas, J. Comput. Phys. 107, 98 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, London, 1994)

  29. L. Celnikier, C. Harvey, R. Jegou, M. Kemp, P. Moricet, A&A 126, 293 (1983)

    ADS  Google Scholar 

  30. D.D. Ryutov, J. Exp. Theor. Phys. 30, 131 (1970)

    ADS  Google Scholar 

  31. D.A. Gurnett, R.R. Anderson, Science 194, 1159 (1976)

    Article  ADS  Google Scholar 

  32. R.P. Lin, D.W. Potter, D.A. Gurnett, F.L. Scarf, ApJ 251, 364 (1981)

    Article  ADS  Google Scholar 

  33. D.A. Gurnett, W.S. Kurth, R.R. Shaw, A. Roux, R. Gendrin, C.F. Kennel, F.L. Scarf, S.D. Shawhan, Space Sci. Rev. 60, 341 (1992)

    Article  ADS  Google Scholar 

  34. R.E. Ergun et al., ApJ 503, 535 (1998)

    Article  Google Scholar 

  35. A. Mangeney, C. Salem, C. Lacombe, J.-L. Bougeret, C. Perche, R. Manning, P.J. Kellogg, K. Goetz, S.J. Monson, J.-M. Bosqued, Ann. Geophys. 17, 307 (1999)

    Article  ADS  Google Scholar 

  36. P.J. Kellogg et al., J. Geophys. Res. 114, A03103 (2009)

    Google Scholar 

  37. S.L.G. Hess, D.M. Malaspina, R.E. Ergun, J. Geophys. Res. 116, A07104 (2011)

    ADS  Google Scholar 

  38. J. Bougeret et al., Space Sci. Rev. 136, 487 (2008)

    Article  ADS  Google Scholar 

  39. V. Zakharov, J. Exp. Theor. Phys. 35, 908 (1972)

    ADS  Google Scholar 

  40. E.P. Velikhov, A.A. Vedenov, R.Z. Sagdeev, Nucl. Fusion Suppl. 2, 465 (1962)

    Google Scholar 

  41. W.E. Drummond, D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962)

    Google Scholar 

  42. A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Nucl. Fus. 1, 82 (1961)

    Article  Google Scholar 

  43. M. Starodubtsev, C. Krafft, Phys. Rev. Lett. 83, 1335 (1999)

    Article  ADS  Google Scholar 

  44. M. Starodubtsev, C. Krafft, B. Lundin, P. Thévenet, Phys. Plasmas 7, 2862 (1999)

    Article  ADS  Google Scholar 

  45. B.B. Kadomtsev, O.P. Pogutse, Sov. Phys. J. Exp. Theor. Phys. 26, 1146 (1967)

    ADS  Google Scholar 

  46. C. Krafft, A. Volokitin, Ann. Geophys. 21, 1393 (2003)

    Article  ADS  Google Scholar 

  47. B. Lundin, C. Krafft, G. Matthieussent, J. Geophys. Res. 100, 3703 (1995)

    Article  ADS  Google Scholar 

  48. L. Celnikier, C. Harvey, R. Jegou, M. Kemp, P. Moricet, A&A 126, 293 (1983)

    ADS  Google Scholar 

  49. L. Celnikier, L. Muschietti, M. Goldman, A&A 181, 138 (1987)

    ADS  Google Scholar 

  50. E. Kontar, H.L. Pécseli, Phys. Rev. E 65, 066408 (2002)

    Article  ADS  Google Scholar 

  51. B. Li, P.A. Robinson, I.H. Cairns, Phys. Rev. Lett. 96, 145005 (2006)

    Article  ADS  Google Scholar 

  52. P. Henri, F. Califano, C. Briand, A. Mangeney, J. Geophys. Res. 115, A06106 (2010)

    ADS  Google Scholar 

  53. D.M. Malaspina, I.H. Cairns, R.E. Ergun, J. Geophys. Res. 115, A01101 (2010)

    ADS  Google Scholar 

  54. P. Henri, C. Briand, A. Mangeney, S.D. Bale, F. Califano, K. Goetz, M. Kaiser, J. Geophys. Res. 114, A03103 (2009)

    ADS  Google Scholar 

  55. P.J. Kellogg, K. Goetz, S.J. Monson, S.D. Bale, J. Geophys. Res. 104, 17069 (1999)

    Article  ADS  Google Scholar 

  56. R.E. Ergun et al., Phys. Rev. Lett. 101, 051101 (2008)

    Article  ADS  Google Scholar 

  57. C. Krafft, A. Volokitin, V. Krasnoselskikh, T. Dudok de Wit, J. Geophys. Res. DOI:10.1002/2014JA020329 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Krafft.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krafft, C., Volokitin, A. Hamiltonian models for resonant wave-particle interaction processes in magnetized and inhomogeneous plasmas. Eur. Phys. J. D 68, 370 (2014). https://doi.org/10.1140/epjd/e2014-50195-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50195-2

Keywords

Navigation