Skip to main content
Log in

Fluid simulations of ion scale plasmas with weakly distorted magnetic fields

FLR-Landau fluid simulations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Three-dimensional simulations of turbulence in collisionless plasmas are presented, using a fluid model that extends the anisotropic MHD to scales of the order of the ion gyroradius and below in directions perpendicular to the ambient magnetic field. This model, which includes linear Landau damping and finite Larmor radius corrections to all the retained moments, provides an efficient tool to describe Alfvénic turbulence in the absence of cyclotron resonance. When sufficiently small scales are retained, no artificial damping nor collisional effects is required. Simulations with large-scale Alfvenic driving show the development of perpendicular power-law spectra (taken at zero parallel wavenumber) with an exponent close to –2.8 for the perpendicular magnetic field at scales smaller than the ion inertial length. The electric field spectrum displays a break at intermediate scales, consistent with Solar Wind observations. These spectra appear in a quasi-stationary state after early-formed sheet-like density and current structures have evolved into filaments. In the presence of temperature anisotropy, the nonlinear development of the mirror instability leads to pressure-balanced magnetic structures surrounded by significant ion velocity fields perpendicular to the ambient field. At later time, the system becomes turbulent, with the disruption of the magnetic structures into parallel filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Snyder, G.W. Hammett, W. Dorland, Phys. Plasmas 4, 3974 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Macmahon, Phys. Fluids 8, 1840 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Goswami, T. Passot, P.L. Sulem, Phys. Plasmas 12, 102109 (2005)

    Article  ADS  Google Scholar 

  4. J.J. Ramos, Phys. Plasmas 12, 052102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Passot, P.L. Sulem, Phys. Plasmas 14, 082502 (2007)

    Article  ADS  Google Scholar 

  6. T. Passot, P.L. Sulem, P. Hunana, Phys. Plasmas 19, 082113 (2012)

    Article  ADS  Google Scholar 

  7. P. Hunana, M.L. Goldstein, T. Passot, P.L. Sulem, D. Laveder, G.P. Zank, Astrophys. J. 766, 93 (2013)

    Article  ADS  Google Scholar 

  8. P. Hunana, M.L. Goldstein, T. Passot, P.L. Sulem, D. Laveder, G.P. Zank, Proc. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, Big Island, Hawaii, 2012, edited by G. Zank et al., in AIP Conf. Proc., Vol. 1539 (2013), pp. 179–182

  9. P.L. Sulem, T. Passot, submitted to J. Plasma Phys.

  10. S.P. Gary, J. Plasma Phys. 35, 431 (1986)

    Article  ADS  Google Scholar 

  11. G. Belmont, L. Rezeau, Ann. Geophys. 5, 59 (1987)

    Google Scholar 

  12. F. Sahraoui, G. Belmont, M.L. Goldstein, Astrophys. J. 748, 100 (2012)

    Article  ADS  Google Scholar 

  13. D. Laveder, L. Marradi, T. Passot, P.L. Sulem, Geophys. Res. Lett. 38, L17108 (2011)

    ADS  Google Scholar 

  14. P. Sharma, G.W. Hammett, J. Comput. Phys. 227, 123 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. P. Sharma, G.W. Hammett, E. Quataert, J.A. Stone, Astrophys. J. 637, 952 (2006)

    Article  ADS  Google Scholar 

  16. J.M. TenBarge, G.C. Howes, W. Dorland, G.W. Hammett, Comput. Phys. Commun. 185, 578 (2014)

    Article  ADS  Google Scholar 

  17. G.G. Howes, J.M. TenBarge, W. Dorland, E. Quataert, A.A. Schekochihin, R. Numata, T. Tatsuno, Phys. Rev. Lett. 107, 035004 (2011)

    Article  ADS  Google Scholar 

  18. M. Lesieur, O. Metais, Ann. Rev. Fluid Mech. 28, 45 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophys. J. Suppl. Ser. 182, 310 (2009)

    Article  ADS  Google Scholar 

  20. D. Biskamp, E. Schwartz, A. Zeiler, A. Celani, J.F. Drake, Phys. Plasmas 6, 751 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Galtier, Phys. Rev. E 77, 015302 (2008)

    Article  ADS  Google Scholar 

  22. F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Phys. Rev. Lett. 102, 231102 (2009)

    Article  ADS  Google Scholar 

  23. F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010)

    Article  ADS  Google Scholar 

  24. F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010)

    Article  ADS  Google Scholar 

  25. O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Astrophys. J. 760, 121 (2012)

    Article  ADS  Google Scholar 

  26. F. Sahraoui, S.Y. Huang, G. Belmont, M.L. Goldstein, A. Rétino, P. Robert, J. De Patoul, Astrophys. J. 777, 15 (2013)

    Article  ADS  Google Scholar 

  27. H. Miura, K. Araki, J. Phys.: Conf. Ser. 318, 072032 (2011)

    ADS  Google Scholar 

  28. R. Meyrand, S. Galtier, Phys. Rev. Lett. 111, 264501 (2013)

    Article  ADS  Google Scholar 

  29. S. Boldyrev, K. Horaites, Q. Xia, J.C. Perez, Astrophys. J. 777, 41 (2013)

    Article  ADS  Google Scholar 

  30. K.W. Smith, P.W. Terry, Astrophys. J. 730, 133 (2011)

    Article  ADS  Google Scholar 

  31. F. Sahraoui, G. Belmont, M.L. Goldstein, Astrophys. J. 748, 100 (2012)

    Article  ADS  Google Scholar 

  32. F. Califano, P. Hellinger, E. Kuznetsov, T. Passot, P.L. Sulem, P.M. Trávníček, J. Geophys. Res. 113, A08219 (2008)

    ADS  Google Scholar 

  33. F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pinçon, A. Balogh, Phys. Rev. Lett. 96, 075002 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Passot.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passot, T., Henri, P., Laveder, D. et al. Fluid simulations of ion scale plasmas with weakly distorted magnetic fields. Eur. Phys. J. D 68, 207 (2014). https://doi.org/10.1140/epjd/e2014-50160-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50160-1

Keywords

Navigation