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Abstract. The frustrated total internal reflection theories (FTIR) from previous century are thoroughly
recalculated from the, so called, monodromy operator’s point of view – a theory lunched by Born and Wolf
[Principles of Optics (Pergamon Press, 1975), Chap. 1.6] and Arnold [Geometric Methods in the Theory
of Ordinary Differential Equations (Springer, 1987)]. Monodromy is a theory of simultaneous solution (for
both reflection and transmission amplitudes) of one dimensional Schrödinger equation (for the wavefunction
and its derivative) and the Maxwell equation (for electric and magnetic fields). Introducing new quantities:
the dwell distance and the phase distance, we get general Goos-Hänchen (G-H) shift formula for optical
tunneling for three layer system with refraction indexes n0, n1, n2. This formula reduces itself to expressions
known from the scientific literature for infinite air gap (infinite width of second layer). Extension to many
layers is possible.

1 Introduction to monodromy

The phenomenon of the penetration of the light into the
second medium when total internal reflection occurs was
investigated first by Newton (1642–1726) and the math-
ematical description was given by Fresnel (1788–1827).
Thereafter in the next centuries or nearly one hundred
years later the total internal reflection was studied in
Hall [1], Försteling [2] and Arzelies [3] papers. Leurgans
and Turner [4] called the process ‘frustrated’, when the
wave undergoing the total reflection at the first interface
between two media with refractive indexes respectively n0

and n1 is transmitting energy to the third medium with
refractive index n2. The discovery of the Goos-Hänchen
shift [5,6] in 1947 (i.e. reflected beam emerges at place
different then the point of incidence) caused some con-
troversy. To solve that problem, Renard in reference [7]
wrote: “Artmann. . . starting from the Fresnel-Maxwell
equations, considered only the mathematical expressions
for the incident and totally reflected beams. From the dif-
ference of phase between these two beams he was able to
account for the observed shift”. . . The shift was different
for polarization parallel and perpendicular to the plane.
According to Renard “the G-H shift is identified with a
translation of beam and the principle of energy conser-
vation is used to establish the quantitative expression for
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the shift”. . . This however had been done without study-
ing influence of middle medium width on the shift.

The FTIR phenomenon for three layer system in
optics can be accurately solved through extending the
Schrödinger equation monodromy operator theory on the
electromagnetic wave propagation in a stratified medium.

Our calculations allow us to combine Artmann and
Renard methods with not too rigorous analysis of Court
and von Willisen [8].

The stratified medium corresponds to the barrier sys-
tem in nuclear (or solid state) physics. The barrier system
can be described by a piecewise potential what requires
a piecewise-defined function. Each subfunction built on
subdomain (interval) must include two possible ways of
(lossless) scattering: reflection and transmission. In case
of n barriers the wavefunction domain is divided into n+2
intervals.

It is well known that second order linear differen-
tial equation has two linearly independent basic solutions
i.e. regular or irregular at origin (Ψ (j)

r (x), Ψ (j)
ir (x)) ≡

(F (j)
l (η, x), G(j)

l (η, x))
l=0, η=0−−−−−→ (sin(j)(x), cos(j)(x)) (e.g.

see [9,10]). It is no unique choice. We can take also inward
and outward wavefunctions (Ψ (j)

in , Ψ (j)
out). We assume that

these solutions are known in each subdomain (interval)
of the independent variable x. Then any solutions of the
Schrödinger equation on jth interval can be written as:

ψ(j)(x) = AjΨ
(j)
r (x)+BjΨ

(j)
ir (x) = CjΨ

(j)
in (x)+DjΨ

(j)
out(x).
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The unimodular (unitary) transformation

U =

⎡
⎢⎢⎣

1√
2

1√
2

− i√
2

i√
2

⎤
⎥⎥⎦ ,→ U−1 =

⎡
⎢⎢⎣

1√
2

i√
2

1√
2

− i√
2

⎤
⎥⎥⎦ (1)

joins both pairs of independent solutions expressed in
terms of wronskian matrices:
[
W

(j)
(in,out)(x)

]
x∈(xj,xj+1)

=
[
W

(j)
(r,ir)(x)

]
x∈(xj,xj+1)

◦ U

where

[
W

(j)
(r,ir)(x)

]
x∈(xj,xj+1)

=

⎡
⎣Ψ

′(j)
r,l (x) Ψ

′(j)
ir,l (x)

Ψ
(j)
r,l (x) Ψ

(j)
ir,l(x)

⎤
⎦

x∈(xj,xj+1)

and the prime (′) denotes derivative over κx. Simultaneous
interchange of rows and columns to get standard wron-
skian’s matrix does not influence calculation.

We can also introduce Φ(j)
(in,out)(x) wavefunction matrix

which is similar to wronskian W (j)
(r,ir)(x)

[
Φ

(j)
(in,out)(x)

]
x∈(xj,xj+1)

=[U ]−1
[
W

(j)
(r,ir)(x)

]
x∈(xj,xj+1)

[U ]

Φ
(j)
(in,out)(x) describes propagation of wavefunctions in a

given layer (i.e. under a barrier or in a well).
To solve Schrödinger equation describing evolution of

a particle through piecewise potential, without bound-
ary condition at origin, we need to find transition ma-
trix between input coefficients (A0, B0) or (C0, D0) of
the wavefunction Φ(0) and output ones (An+1, Bn+1) or
(Cn+1, Dn+1) of the wavefunction Φ(n+1). In other words,
from the piecewise differentiable wavefunctions we want
to build continuously differentiable solution in the whole
domain. Two port network is analogous to such matrix in
communication and electronic engineering. Here we have
kind of quadruple quantum network

[
Cn+1

Dn+1

]
=

[
Transmission

matrix

] [
C0

D0

]
.

This transmission matrix is also a quantum tunneling ana-
log of a multistepped transmission line.

The stationary Schrödinger equation with multipoint
boundary conditions can be solved with help of mon-
odromy operator [11]. The linear operator which relates
pairs of the Schrödinger equation independent solutions
before the interface (potential step) with another pair of
the same kind of independent solutions behind this inter-
face is the Schrödinger equation monodromy operator for
that interface (step).

From mathematical point of view the following words
are interchangeable:

– the potential step ↔ interface;
– rectangular potential barrier (or a well) ↔ layer.

Two potential steps form barrier (or a well), layer between
two other layers is a barrier (or a well) between two phys-
ical media.

Born and Wolf [12] reduce TE and TM wave prop-
agation in a stratified medium to a pair of telegrapher
equation. The magnetic wave is proportional to the elec-
tric wave derivative. This property not important to Born
and Wolf, from mathematical point of view enable us to in-
troduce the electromagnetic monodromy operator. Anal-
ysis show that TE and TM wavefunction propagation
through multilayer system can be described in terms of
the Schrödinger multibarrier scattering.

The general form of one dimensional equation solutions
the Schrödinger equation (the wavefunction and its deriva-
tive) and the Maxwell equation (the electric and magnetic
fields), for a barrier (a well) system or multilayer system
in case of plane waves is given by:

[
Teikf b

0

]
= [M ]f,in

[
eikina

Re−ikina

]
(2)

[
T

0

]
=

[
e−ikf b 0

0 eikf b

]
[M ]f,in

[
eikina 0

0 e−ikina

] [
1
R

]

(3)

where C0 = 1, D0 = R and Cn+1 = T , Dn+1 = 0.
If we are able to build the matrix [M ]f,in then it is easy

to calculate unknown quantities: reflection R and trans-
mission T amplitudes. Both amplitudes can be expressed
as elements of that matrix. kin is momentum in front of
barrier or in the first layer. kf is wave momentum outside
barrier or in the last (third) layer. The matrix [M ]f,in is
called the unimodular monodromy operator, det [M ] = 1,
and with accordance to the idea written by Arnold in ref-
erence [11] in our case is:

[M ] =
[
M11 M12

M21 M22

]
; M∗

12 = M21; M∗
11 = M22

what can be rewritten as composition of unitary and her-
mitian matrix:

[M ] = [M ]U [M ]H

or using the unknown quantities T = |T | eiφT , R =
|R| eiφR as:

[M ] =

⎡
⎢⎣

1
T ∗ −R

∗

T ∗

−R
T

1
T

⎤
⎥⎦ . (4)

That representation is only true for plane waves, for single
potential step as well as multistep composition in case of
the Schrödinger equation and for superposition of reflec-
tion and transmission amplitudes at multi layer interfaces.
For example, in case of one barrier (two steps) and three

http://www.epj.org


Eur. Phys. J. D (2014) 68: 305 Page 3 of 11

layers we get:

[M ] =

⎡
⎢⎢⎣

1
T ∗

2

−R
∗
2

T ∗
2

−R2

T2

1
T2

⎤
⎥⎥⎦
[
eiϕ 0
0 e−iϕ

]
⎡
⎢⎢⎣

1
T ∗

1

−R
∗
1

T ∗
1

−R1

T1

1
T1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1
T ∗

1 T
∗
2

eiϕ+
R1R

∗
2

T1T ∗
2

e−iϕ − R∗
1

T ∗
1 T

∗
2

eiϕ− R∗
2

T1T ∗
2

e−iϕ

− R2

T ∗
1 T2

eiϕ− R1

T1T2
e−iϕ 1

T1T2
e−iϕ+

R∗
1R2

T ∗
1 T2

eiϕ

⎤
⎥⎥⎦

(5)

where ϕ is phase increment in the well or in the mid-
dle layer. In case of the barrier or FTIR, ϕ = iκL is
pure imaginary. The middle matrix describes the evolution
of sub-barrier wavefunction. This matrix has evanescent
and anti-evanescent wavefunctions. Solving equations (2)
and (3) we get R = M21/M22 or T = 1/M22:

M21 =
R

T
=
R2T1e

iϕ +R1T
∗
1 e

−iϕ

|T1|2 T2

(6)

M22 =
1
T

=
T ∗

1 e
−iϕ +R∗

1T1R2e
iϕ

|T1|2 T2

(7)

|R|2 =

(
R1 −R2e

−2κL
) (
R∗

1 −R∗
2e

−2κL
)

(1 −R∗
1R2e−2κL) (1 −R1R∗

2e
−2κL)

. (8)

Calculating the monodromy operator for certain physical
system i.e. barrier composition for reflected and transmit-
ted particle, we are able to find relevant solution for ana-
log optical system (TE ,TM ). It is not easy though to
calculate Rj and Tj for FTIR not applying monodromy.
Additionally the reflection and refraction on two single
interfaces, in case of a thin layer between them cannot
be treated as independent. Probably that independence
is source of the term ‘frustrated’. There is no compari-
son of that problem to quantum mechanics in scientific
literature.

It is advisable to compare expression (4)–(8) with
(57)–(59) (77)–(79) in chap. 1.6 in reference [12]. There
is certain difference between them: r12 must be complex
and in denominator (8) there is r∗12 = R∗

1. Moreover from
quantum point of view |r12| ≤ 1 and |r23| ≤ 1.

Now we introduce general method of photon lossless
propagation through n layer. Photon undergo only reflec-
tion or refraction in interface system like the quantum
particle which is scattered on the barrier system as in
Figure 1.

One step transmission represented by the matrix Ij+1

is the base for calculations. Action of that matrix is shown
in Figure 2. Let us enumerate steps or interfaces with nat-
ural numbers starting from one. Then first step is between
zero layer and first layer and the matrix Ij+1 is:

Ij+1 =

⎡
⎢⎣

√
κj+1
κj

0

0
√

κj

κj+1

⎤
⎥⎦ . (9)

Fig. 1. System of barriers and potential steps according to

quantum mechanics. Ψ
(0)
in (−∞) is incoming beam, RΨ

(0)
out(−∞)

reflected wave, TΨ
(0)
out(∞) transmitted wave, Ψ

(0)
in/out(x) under-

barrier inward and outward wavefunction.

Fig. 2. The potential i + 1 step, described by unimodular
diagonal c-number matrix, κi, κi+1 are reduced barrier heights.

Multiplication of the Ij+1 matrix and the matrices W
constitutes the total transition matrix i.e. one-step matrix
through j + 1 interface

M
(1)
j+1,j(xj+1) =

[
W (j+1)(xj+1)

]−1

I−1
j+1W

(j)(xj+1) (10)

W is basic solution matrix in adjoining layers i.e. j, j + 1,
and its determinant det[W ] is wronskian.

The transmission through two successive interfaces,
what is equivalent to scattering on the barrier, is given
by product of two one-step matrices

M
(2)
j+2,j(xj+2, xj+1)

=
[
W (j+2)(xj+2)

]−1

I−1
j+2W

(j+1)(xj+2)

×
[
W (j+1)(xj+1)

]−1

I−1
j+1W

(j)(xj+1). (11)

Alike we build the transmission M for n interfaces

Mn+1,0(xn+1, x1) =
n∏

j=0

M
(1)
j+1,j(xj+1) = Mf,in. (12)

In Sprung et al. paper [13] authors introduce transmission
matrices W and M both related by similarity transforma-
tion and composed from two independent solutions of the
Schrödinger equation. Our method is different, matrix M
is not similar to W and is not restricted to periodical sys-
tems. Our M for one interface is given by equation (10). In
case of two interfaces (two potential steps) is given by (11),
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and in case of multistep (or many interfaces) superposition
M is given by (12) as it is shown in Figure 1.

To show relation between equations (5) and (11) we
rewrite the last one with help of wronskians and identity
matrix I = U−1U as:

M
(2)
j+2,j(xj+2, xj+1) =

[
Φ

(j+2)
in,out(xj+2)

]−1

U−1I−1
j+2U

× Φ
(j+1)
in,out(xj+2)

[
Φ

(j+1)
in,out(xj+1)

]−1

× U−1I−1
j+1UΦ

(j)
in,out(xj+1). (13)

This equation without external matrices
[
Φ(j+2)

]
and[

Φ(j)
]

has form of equation (5) where U−1I−1
2 U is equiv-

alent to ⎡
⎢⎢⎣

1
T ∗

2

−R
∗
2

T ∗
2

−R2

T2

1
T2

⎤
⎥⎥⎦

while U−1I−1
1 U to

⎡
⎢⎢⎣

1
T ∗

1

−R
∗
1

T ∗
1

−R1

T1

1
T1

⎤
⎥⎥⎦ .

The matrix

Φ
(1)
in,out(x2)

[
Φ

(1)
in,out(x1)

]−1

≡ Φj,k (14)

in case of plane waves represents diagonal middle matrix
in equation (5).

Sprung analysis can not be generalized to any barrier
system. But it is particular case of our calculation when
we deal with periodic barrier system and we use plane
waves.

In optics the symmetric barrier is represented by ex-
ternal layers with the same properties (n0 = n2) where
the middle layer has refraction index n1 < min(n0, n2).
In that case, from the particular monodromy matrix (5),
we get total reflection probability |R|2 (cf. Eq. (8)) ex-
pressed as function of reflection probability from single
interface |r|2 if we assume that |R1|2 = |R2|2 = |r|2 and
z = exp(−κL)

|R|2 =
|r|2 (1 − e−2κL

) (
1 − e−2κL

)
(
|r|2 e−2κL − 1

)(
|r|2 e−2κL − 1

)

=
|r|2 (1 − z2

)2

(
|r|2 z2 − 1

)2 . (15)

The phase increment κL of the under-barrier wavefunction
is calculated according to optics rules. In optical tunneling

0.2

0.4

0.6

0.8

1.0

surface reflection

0

5

10

15

barrier width

0.0

0.5

1.0

total reflection

Fig. 3. Total reflection from three layer system according to
equation (15) as function of the single surface reflection and
barrier width, case n0 = n2.

it is given by:

κL = κ1L = kvacuum Ln1 cosϑ1

= kvacuum Ln0

√
sin2 ϑ0 − n2

1,0

= kvacuum L

√
n2

0 sin2 ϑ0 − n2
1

where kvacuum = 2π
λvacuum

.

The dependence of the total reflection |R|2 on the bar-
rier width L and on the middle layer reflection probabil-
ity |r|2 has been shown in Figure 3. The dependence on
transmission T according to condition |R|2 + |T |2 = 1 can
be imagined on the |R|2 surface as certain curve start-
ing from the right upper back corner (|R|2 = 1, L = 15,
|r|2 = 1). In calculation the following parameters has been
used: n0 = 1.4, n1 = 1.0, λvacuum = 7, ϑ0 = 54◦. In case
of visible light it can be accepted that one unit length is
i.e. 100 nm, and λ has 7 units, then the maximum barrier
width L used in such calculations is 15 units.

Equation (15) for |r|2 = 1 implies |R|2 = 1. To our
opinion that implication is source of the word ‘frustrated’
in FTIR. This crude approximation was used in refer-
ences [14–16] and many others.

In case of three layer system with different refrac-
tion indexes n0 	= n1 	= n2 corresponding to the reduced
barrier height κ1 with external wave numbers κ0 	= κ2,
the monodromy theory equation (11) gives the following
expression for tunneling-transmission probability through
two step non-symmetric barrier:

1

|T |2 =
(κ2 + κ0)2

4κ2κ0
+

(
κ2

1 − κ2
0

) (
κ2

1 − κ2
2

)
4κ2

1κ2κ0
sin2 (κ1L)

= β + α sin2 (κ1L) . (16)

It is impossible to get this formula from equation (5) with-
out quantum tunneling theory.
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The more general form of tunneling-transmission am-
plitude is:

1
T

=
1
2

(√
κ0

κ2
+

√
κ2

κ0

)
(Φ11 + Φ22)

2

+
1
2

(√
κ0

κ2
−

√
κ2

κ0

)
(Φ12 + Φ21)

2

+
1
2

⎛
⎝
√

κ2
1

κ2κ0
+

√
κ2κ0

κ2
1

⎞
⎠ (Φ22 − Φ11)

2

+
1
2

⎛
⎝
√

κ2
1

κ2κ0
−

√
κ2κ0

κ2
1

⎞
⎠ (Φ12 − Φ21)

2

where Φjk are complex quantities and are given by
equation (14).

To convert the Schrödinger equation result into
Maxwell equation we assume the following notation:
N = n0

n1
, n = n2

n0
, μ1,0 = μ1

μ0
, ε1,0 = ε1

ε0
or more generally

nj,k = nj

nk
, μj,k = μj

μk
, εj,k = εj

εk
.

The symbols N and n are chosen to be compatible
with Court and von Willisen [8] paper.

When we want to get from equation (16) an equivalent
formula valid in optics, we must applied the following sub-
stitutions: (cf. Born and Wolf Eqs. (1.6-38,40)) κj ⇒ pj

or κj ⇒ qj and the following relations:

– Substitution for TE wave:

κj ⇒ pj =
√
εj

μj
cosϑj .

When the Snell law is used, we get:

p1 =
√
ε1
μ1

cosϑ1 =
1
μ1

√
n2

1 − n2
0 sin2 ϑ0

= i
n1

μ1

√
N2 sin2 ϑ0 − 1.

We apply substitution to the symbols σj,k = κj

κk
in

the transmission formula (16) when it is rewritten in
terms of:

σ = σ1,0 =
κ1

κ0
⇒ p1

p0
= σTE

1,0 =

√
ε1
μ1

cosϑ1

√
ε0
μ0

cosϑ0

=
i
√
N2 sin2 ϑ0 − 1
μ1,0N cosϑ0

=
i
√

sin2 ϑ0 − n2
1,0

μ1,0 cosϑ0

(17)

σ1,2 =
κ1

κ2
⇒ p1

p2
= σTE

1,2 =
i
√
N2 sin2 ϑ0 − 1

μ1,2N
√
n2

2,0 − sin2 ϑ0

=
i
√

sin2 ϑ0 − n2
1,0

μ1,2

√
n2

2,0 − sin2 ϑ0

(18)

p2 is calculated from the refraction condition between
first and third layers when the middle layer width ap-
proaches zero:

cosϑ2 =

√
1 − n2

0

n2
2

sin2 ϑ0.

– Substitution for TM wave:

κj ⇒ qj =
√
μj

εj
cosϑj

q1 = i
n1

ε1

√
N2 sin2 ϑ0 − 1

σ = σ1,0 =
κ1

κ0
⇒ q1

q0
= σTM

1,0 =

√
μ1
ε1

cosϑ1

√
μ0
ε0

cosϑ0

=
i
√
N2 sin2 ϑ0 − 1
ε1,0N cosϑ0

=
i
√

sin2 ϑ0 − n2
1,0

ε1,0 cosϑ0

(19)

σ1,2 =
κ1

κ2
⇒ q1

q2
= σTM

1,2 =
i
√
N2 sin2 ϑ0 − 1

ε1,2N
√
n2

2,0 − sin2 ϑ0

=
μ1,2n

2
2,0i

√
sin2 ϑ0 − n2

1,0

n2
1,0

√
n2

2,0 − sin2 ϑ0

(20)

– the wave number in the middle layer is:

κ1 = kvacuumn1 cosϑ1 = i
2π
λ1

√
N2 sin2 ϑ0 − 1.

When all these relations are applied to quantum expres-
sion (16) we get equivalent optical tunneling expressions:
in case of TE wave:

1
|T |2

∣∣∣∣∣
TE

= βTE + αTE sinh2 (|κ1|L) (21)

and in case of TM wave:

1
|T |2

∣∣∣∣∣
TM

= βTM + αTM sinh2 (|κ1|L) . (22)

After simple calculations we find the coefficients βTE , αTE

βTE =

(√
μ0
μ2

√
n2 − sin2 ϑ0 +

√
μ2
μ0

cosϑ0

)2

4 cosϑ0

√
n2 − sin2 ϑ0

(23)

αTE =
μ0μ2

μ2
1

(
N2 sin2 ϑ0 + μ2

1
μ2

0
N2 cos2 ϑ0 − 1

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

×
(
N2n2 μ2

1
μ2

2
− 1 +

(
N2 −N2 μ2

1
μ2

2

)
sin2 ϑ0

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

.

(24)
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In order to get the coefficients βTM , αTM it is enough to
permute μ and ε in the expressions for TE coefficients

βTM =

(√
ε0
ε2

√
n2 − sin2 ϑ0 +

√
ε2
ε0

cosϑ0

)2

4 cosϑ0

√
n2 − sin2 ϑ0

=

(√
μ2
μ0

√
n2 − sin2 ϑ0 +

√
μ0
μ2
n2 cosϑ0

)2

4n2 cosϑ0

√
n2 − sin2 ϑ0

(25)

αTM =
ε0ε2
ε21

(
N2 sin2 ϑ0 + ε2

1
ε2
0
N2 cos2 ϑ0 − 1

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

×
(
N2n2 ε2

1
ε2
2
− 1 +

(
N2 −N2 ε2

1
ε2
2

)
sin2 ϑ0

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

=

(
μ0
μ1

cos2 ϑ0 + μ1
μ0
N4 sin2 ϑ0 − μ1

μ0
N2

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

×
(

μ2
μ1

− μ1
μ2
N2n2 +

(
μ1
μ2
N4n2 − μ2

μ1
N2

)
sin2 ϑ0

)

4N2 cosϑ0

(
N2 sin2 ϑ0 − 1

)√
n2 − sin2 ϑ0

(26)

in approximation μj = 1 it is easy to get the following
relation:

αTM = αTE

[
1 − (

N2 + 1
)

sin2 ϑ0

]

×
[(
N2 +

1
n2

)
sin2 ϑ0 − 1

]

being proved using another method in reference [8].
The (never published) equations (23)–(26) are the

most general expressions for tunneling in three layer
system.

2 Goos-Hänchen shift

Goos-Hänchen shift [5,6] occurs in the three layer system
when light beam, traveling in the first layer n0 falls onto
the interface point a under an angle greater than critical
(ϑ0 ≥ ϑc = arcsin (n1/n0)), is reflected from an air slab n1

and emerges at the different point b into the first medium.
In previous chapter we have considered particle trans-

mission in x direction. Now we take the plane of incidence
to be (x, z) plane and z being the direction of stratifica-
tion and transmission. The x axis is parallel to interface.
The incoming flux inside the air slab can be split into two
fluxes parallel and perpendicular to layers.

For the scattering on the barrier we define under-
barrier wavefunctions as a sum of two basic solution
ψ(1)(z) = C1Ψ

(1)
in (κ1z) + D1Ψ

(1)
out(κ1z). According to

Smith [17] and Hauge and Støvneng [18] papers we de-
fine Ddwell

0 as a certain under-barrier dwell distance. We
try to find physical interpretation of that length.

The evanescent and anti-evanescent tunnelling (trans-
mitted) wavefunctions are defined on ce interval in z direc-
tion (see Fig. 8). In many application in optics the evanes-
cent (exponentially decaying) waves are only used [19].
Neglecting anti-evanescent waves is typical approximation
procedure.

The dwell distance for symmetric three layer system
(κ0 = κ2 and σ = σ1,0 = σ1,2) is:

Ddwell
0 =

∫ e

c

∣∣∣ψ(1)(z)
∣∣∣
2

dz

× |T |2
∫ L/2

−L/2

(
cosh2

(
κ1

(
z − L

2

))

+
1
σ2

sinh2

(
κ1

(
z − L

2

)))
dz

= D0,L + Ddwell
0,2 = D0,L +

A
κ1σ

=
L

2

(
1 − 1

σ2

)
|T |2

+
1
2

(
σ +

1
σ

)
sinh(κ1L)

cosh(κ1L)
κ1σ

|T |2 (27)

Ddwell
0 consists of two elements D0,L and Ddwell

0,2 . First
part i.e. D0,L, for transmission far above the barrier, goes
into classical distance - width of the barrier. Second part
Ddwell

0,2 = A
κ1σ is constant and does not disappear when

L→ ∞.
A is defined as:

A =
1
2

(
σ +

1
σ

)
sinh(κ1L) cosh(κ1L) |T |2

=
1
4

(
σ +

1
σ

)
sinh(2κ1L) |T |2 .

Ddwell
0 is called the dwell distance under the barrier in

analogy to the dwell time.
Similarly we can define the phase distance adequately

to the phase time. Dphase
0 = ∂φ

∂κ where φ is the reflected or
transmitted wavefunction phase

Dphase
0 = D0,L +

1
κ1

(
σ +

1
σ

)
A

= D0,L+
1

2κ1

(
σ+

1
σ

)2

sinh(κ1L) cosh(κ1L) |T |2 .

So there is the following relation between both distances:

Dphase
0 = Ddwell

0 +
1
k
A. (28)

These definitions result from transferring time prob-
lem [17] to the length definition in quantum mechanics.

For both distances |T |2 is tunneling probability. In case
of symmetric barrier it is convenient to write that expres-
sion as:

|T |2 =
1

cosh2 (κ1L)
[
1 + 1

4

(
σ − 1

σ

)2 tanh2 (κ1L)
] .
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Ddwell,TE
0,2 =

λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
μ2

1,0 cos2 ϑ0 + sin2 ϑ0 − n2
1,0

)
μ2

1,0 cos2 ϑ0 tanh(κ1L)[
4μ2

1,0 cos2 ϑ0

(
sin2 ϑ0 − n2

1,0

)
+

(
sin2 ϑ0 − μ2

1,0 cos2 ϑ0 − n2
1,0

)2
tanh2 (κ1L)

]

µ=1−−−→ λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
1 − n2

1,0

)
cos2 ϑ0 tanh(κ1L)[

4 cos2 ϑ0

(
sin2 ϑ0 − n2

1,0

)
+

(− cos 2ϑ0 − n2
1,0

)2
tanh2 (κ1L)

]

Then the second term in the dwell distance is:

Ddwell
0,2 =

1
2κ1

(
1 +

1
σ2

)
tanh(κ1L)

1 + 1
4

(
σ − 1

σ

)2 tanh2 (κ1L)

in the limit L→ ∞ we get:

Ddwell
0,2

L→∞−−−−→ 1
2κ1σ

(
σ +

1
σ

)
4(

σ + 1
σ

)2 =
2
κ1

1
(σ2 + 1)

.

Making the substitution σ = σTE
1,0 for the TE wave i.e. in

equation (17), we find the second TE part of the dwell
distance

see equation above.

In the limit of infinite gap:

Ddwell,TE
0,2

L→∞−−−−→ 2
κ1

1
(σ2 + 1)

=

λvacuum

π

1√
n2

0 sin2 ϑ0 − n2
1

μ2
1,0 cos2 ϑ0

μ2
1,0 cos2 ϑ0 + sin2 ϑ0 − n2

1,0

.

(29)

This equation should be compared to Renard d⊥ formula:

d⊥ = DTE
Renard =

sinϑ0

μ1,0
Ddwell,TE

0,2 (L→ ∞) . (30)

The first part of the dwell distance as well as of the phase
distance is given by D0,L, and for TE wave after substi-
tution σ = σTE

1,0 according to (17)

DTE
0,L =

L

2

(
1 − 1

σ2

)
1[

1 + 1
4

(
σ + 1

σ

)2 sinh2 (κ1L)
]
∣∣∣∣∣∣
TE

=
L

2
sin2 ϑ0 − μ2

1,0 cos2 ϑ0 − n2
1,0

sin2 ϑ0 − n2
1,0

× 1

1 + (sin2 ϑ0+μ2
1,0 cos2 ϑ0−n2

1,0)
2

4μ2
1,0 cos2 ϑ0(sin2 ϑ0−n2

1,0)
sinh2 (κ1L)

μ=1−−−→ L

2

(− cos 2ϑ0 − n2
1,0

)

sin2 ϑ0 − n2
1,0

× 1

1 + (1−n2
1,0)

2

4 cos2 ϑ0(sin2 ϑ0−n2
1,0)

sinh2 (κ1L)
.

1.0

1.2

1.4

incident angle

0

5

10

15

barrier width

0

1

2

3

penetration depth

Fig. 4. Ddwell,TE
0 as TE penetration depth ≡ TE dwell dis-

tance surface as first basic quantity to calculate Goos-Hänchen
shift for TE wave.

The total dwell distance Ddwell
0 for the TE wavefunction

is shown in Figure 4.
Similarly for TM : after substitution (19) into D0,L and

Ddwell
0,2 or after replacement μj,k → εj,k in DTE

0,L we get
formulas for TM waves. It is comfortable to express all
permittivities in formulas in term of refraction indexes
and magnetic permeabilities with help of: μj,k → εj,k =
n2

j,k/μj,k

DTM
0,L =

L

2

(
1 − 1

σ2

)
1[

1 + 1
4

(
σ + 1

σ

)2 sinh2 (κ1L)
]
∣∣∣∣∣∣
TM

=
L

2
μ2

1,0 sin2 ϑ0 − n4
1,0 cos2 ϑ0 − μ2

1,0n
2
1,0(

sin2 ϑ0 − n2
1,0

)

× 1

μ2
1,0 + (μ2

1,0 sin2 ϑ0+n4
1,0 cos2 ϑ0−μ2

1,0n2
1,0)

2

4n4
1,0 cos2 ϑ0(sin2 ϑ0−n2

1,0)
sinh2 (κ1L)

DTM
0,L

μ=1−−−→ L

2

(
sin2 ϑ0 − n4

1,0 cos2 ϑ0 − n2
1,0

)

sin2 ϑ0 − n2
1,0

× 1

1 +

(
sin2 ϑ0 + n4

1,0 cos2 ϑ0 − n2
1,0

)2

4n4
1,0 cos2 ϑ0

(
sin2 ϑ0 − n2

1,0

) sinh2 (κ1L)
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Ddwell,TM
0,2 =

λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
ε2
1,0 cos2 ϑ0 + sin2 ϑ0 − n2

1,0

)
ε2
1,0 cos2 ϑ0 tanh(κ1L)[

4ε2
1,0g (ϑ0) +

(
sin2 ϑ0 − ε2

1,0 cos2 ϑ0 − n2
1,0

)2
tanh2 (κ1L)

]

=
λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
n4

1,0 cos2 ϑ0 + μ2
1,0

(
sin2 ϑ0 − n2

1,0

))
n4

1,0 cos2 ϑ0 tanh(κ1L)[
4μ2

1,0n
4
1,0g (ϑ0) +

(
μ2

1,0

(
sin2 ϑ0 − n2

1,0

)− n4
1,0 cos2 ϑ0

)2
tanh2 (κ1L)

]

µ=1−−−→ λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
n4

1,0 cos2 ϑ0 +
(
sin2 ϑ0 − n2

1,0

))
n4

1,0 cos2 ϑ0 tanh(κ1L)[
4n4

1,0g (ϑ0) +
((

sin2 ϑ0 − n2
1,0

)− n4
1,0 cos2 ϑ0

)2
tanh2 (κ1L)

]

see equation above

where we put g (ϑ0) = cos2 ϑ0

(
sin2 ϑ0 − n2

1,0

)
.

In the limit of infinite gap for TM :

Ddwell,TM
0,2

L→∞−−−−→ 2
κ1

1
(σ2 + 1)

=
λvacuum

π

1√
n2

0 sin2 ϑ0−n2
1

ε21,0 cos2 ϑ0

ε21,0 cos2 ϑ0+sin2 ϑ0−n2
1,0

=
λvacuum

π

1√
n2

0 sin2 ϑ0 − n2
1

× n4
1,0 cos2 ϑ0

n4
1,0 cos2 ϑ0 + μ2

1,0

(
sin2 ϑ0 − n2

1,0

) . (31)

Comparing to Renard d‖ we get the following relation:

d‖ = DTM
Renard =

sinϑ0

ε1,0
Ddwell,TM

0,2 (L→ ∞). (32)

The total dwell distance Ddwell,TE
0 = DTE

0,L +Ddwell,TE
0,2 for

the TE and μj = 1 is shown in Figure 4 for the following
parameters n0 = n2 = 1.5, n1 = 1.0, λvacuum = 7, ϑ0 ∈
(ϑc, π/2), L ∈ (0, 15).

Ddwell,TM
0 is shown in Figure 5.

In case of the phase distance:

Dphase,TE
0,2 =

1
2κ1

(
σ+

1
σ

)2 tanh(κ1L)

1 + 1
4

(
σ− 1

σ

)2 tanh2 (κ1L)

∣∣∣∣∣
TE

=
λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

×
(
μ2

1,0 cos2 ϑ0+sin2 ϑ0−n2
1,0

)2
tanh(κ1L)[

4μ2
1,0g (ϑ0)+

(
sin2 ϑ0−μ2

1,0 cos2 ϑ0−n2
1,0

)2
tanh2 (κ1L)

]

μ=1−−−→ λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

×
(
1 − n2

1,0

)2 tanh(κ1L)[
4g (ϑ0) +

(− cos 2ϑ0 − n2
1,0

)2 tanh2 (κ1L)
] .

0.8
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5

Fig. 5. Ddwell,TM
0 as TM penetration depth ≡ TM dwell dis-

tance surface as first basic quantity to calculate Goos-Hänchen
shift for TM wave.

1.0
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Fig. 6. Dphase,TE
0 as TE penetration depth ≡ phase distance

surface as second basic quantity to calculate Goos-Hänchen
shift for TE wave.

The total phase distance for the TE wave is the sum of
two sub-distances Dphase,TE

0 = DTE
0,L + Dphase,TE

0,2 and is
shown in Figure 6.

That distance does not disappear for the infinite gap
and for grazing angles as well as tangent beam ϑ0 → π/2.
It is Hartman effect [20] for the phase distance. Only ex-
periment can answer the question if G-H in that limit
tends to zero or remains finite.
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Dphase,TM
0,2 =

λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
n4

1,0 cos2 ϑ0 + μ2
1,0

(
sin2 ϑ0 − n2

1,0

))2
tanh(κ1L)[

4μ2
1,0n

4
1,0g (ϑ0) +

(
μ2

1,0

(
sin2 ϑ0 − n2

1,0

)− n4
1,0 cos2 ϑ0

)2
tanh2 (κ1L)

]

µ=1−−−→ λvacuum

πn0

(
sin2 ϑ0 − n2

1,0

)1/2

(
n4

1,0 cos2 ϑ0 + sin2 ϑ0 − n2
1,0

)2
tanh(κ1L)[

4n4
1,0g (ϑ0) +

(
sin2 ϑ0 − n2

1,0 − n4
1,0 cos2 ϑ0

)2
tanh2 (κ1L)

]

1.0
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0
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15
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2
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Fig. 7. Dphase,TM
0 as TM penetration depth ≡ phase distance

surface as second basic quantity to calculate Goos-Hänchen
shift for TM wave.

Similarly after substitution σ = σTM
1,0 we get

Dphase,TM
0 = DTM

0,L + Dphase,TM
0,2 where

see equation above

Dphase,TM
0 is shown in Figure 7.

In case of infinite gap we get:

Dphase
0

L→∞−−−−→ 1
2κ1

(
σ +

1
σ

)2 4(
σ + 1

σ

)2 =
2
κ1

=
λvacuum

π

1√
n2

0 sin2 ϑ0 − n2
1

. (33)

In that limit Dphase
0 is the same for both TE and TM

waves.
Equation (33) is a source of the earliest fits of the ex-

perimental G-H shift (Dempirical
GH−shift ≈ Dphase

0,2 (L→ ∞)).

3 The physical interpretation of Dphase
0 i Ddwell

0

In scientific literature there is no consistent G-H theory
and it does not fit the experimental data. The main prob-
lem from the theoretical point of view is to be able to
define measurable quantum distances.

From the quantum mechanical point of view and in-
terpretation of (27), quantities D0 i.e. (Ddwell

0 or Dphase
0 )

Fig. 8. The simplified geometry of the Goos-Hänchen shift.
ϑ0 is the angle of incidence, ϑ2 – the angle of the transmitted
beam, R the reflected beam, T the transmitted beam, L width
of the air slab, d‖ the distance between the point of incidence a
and the point b where the beam emerges when reflected, d0 the
penetration distance, h penetration depth, d shift in reflected
beam, n0, n1, n2 the refraction indexes in subsequent layers.

should define certain barrier penetration depth. Both dis-
tances, as it results from Figures 4–7 behave differently
when L→ ∞; ϑ0 → π/2, the dwell distance goes to zero,
the phase distance remains finite.

That distances should be related to quantities
experimentally measured. The equations proportional
to (29), (31) i.e. Ddwell

0 (L → ∞, μ = 1) were discussed
in Renard [7] paper. Equation (33) i.e. Dphase

0 (L → ∞)
was discarded as unrealistic but it result from the defini-
tion of phase distance.

The simplified geometry of Goos-Hänchen shift is
shown in Figure 8. The incident photon behaves like a
ball reflected from the springboard (i.e. elastic scattering
in the potential field). We assume that the top of isosce-
les triangle built on ab interval is apparent reflected pho-
ton point. Distance ab is dependent on the penetration
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depth h. Below we define quantities which should be re-
lated to dwell or phase distances:

– d‖: the distance between points a, b. d‖ = 2d0 sin(ϑ0)
– if the light beam slides on the interface, d‖ should be
proportional to Ddwell

0 .
– d0: it is half of the real dwell distance. Such two in-

tervals d0 together with d‖ form isosceles triangle. Its
height is h (Of course it is a simple approximation
because the light trajectory between a and b points
remains unknown.).

– h: d‖ = 2h tan(ϑ0) – the dwell distance as (double)
penetration depth.

From these quantities we calculate d: the parallel shift of
the reflected beam at point b against possible reflection at
point a. d = 2d0 sin(ϑ0) cos(ϑ0) = d‖ cos(ϑ0) = 2h sin(ϑ0).

Only an experiment can answer the question, which
quantity from {d0, h, d‖} is related to D0 if the simplified
geometry is working.

Heibel et al. in their paper [21] suggest following choice
d‖ = Dphase

0 . It is also possible that D0 consists of one or
two intervals d0 or one or two intervals h. Unfortunately
there is no data showing where tunneling photon appears.
Available are only data from tunneling time TE , TM mea-
surements as those in reference [22] based on complex
transmission time (That time consists of the real phase
time and the imaginary so called loss-time.). For asym-
metric systems phases (times) related to reflection and
transmission can be different.

Renard’s calculations suggest that 2h is equal to
Ddwell

0 . If so, the above geometric formulas for the infi-
nite gap differ by the magnetic permeability ratio (for TE
wave, see Eq. (30)) and by the permitivity ratio (for TM
wave, see Eq. (32)) from Renard’s expressions for d shift.
Renard’s geometry dependent method shows he integrates
the Maxwell equation between a and b points. We inte-
grate evanescent and anti-evanescent waves between c and
e points. Such choice forbids negative G-H shift found in
reference [23]. Renard and Artmann described two phys-
ically different situations. Artmann calculations are the
limit of Dphase

0 while Renard’s the limit of Ddwell
0 .

According to Renard the surface wave travels from
point a to point b. This wave is not standing, as is of-
ten stated. It travels in the x direction in the incident
plane, parallel to the interface 1. His main assumption to
calculate the G-H shift is equality of the time average en-
ergy flux for the reflected wave across a strip whose width
is d with the time average energy flux generated by the
surface wave in the entire medium of lower index. To gen-
eralize that point of view, we consider the flow of energy
through the barrier described by the complex Poynting
vector. Next we analyse the flux conservation in the in-
cident plane by means of the planar variant of the diver-
gence theorem.

A few words about the dwell time and the phase time.
It is generally accepted [18] that the dwell time τD is a
measure of the time averaged over all scattering channels
spent by a particle in a region of space. It can be defined
locally for arbitrary points x1 and x2. The phase time

seems to be asymptotic in character result of the extrapo-
lating procedure to fit that time to scattering region inside
its boundary i.e. in one dimension between points x1, x2,
or between points c, e, in two dimension between the in-
terval ab and point e or between the interval ab and the
interval which includes f, e. But such corollary time defi-
nitions cause problems when such ones are being applied
to distances. The calculations show that dwell distance is
related to the reflection channel while the phase distance
contains the dwell distance and another part (A) which is
responsible for the transmission (tunneling) channel.

To compare properties of the photon TE , TM wave-
function with one dimensional Schrödinger wavefunction
the method of separation of variables is applied to the
photon wavefunction written below:

F (r, t) =
(

D(r, t)√
2ε0

+ i
B(r, t)√

2μ0

)

|F (x, y, z)|2

=

∣∣∣∣∣∣∣

∑
j

Dj(x, y)êjUj(z)
√

2ε0
+ i

∑
j

Bj(x, y)êjVj(z)
√

2μ0

∣∣∣∣∣∣∣

2

.

Very interesting case is what we get if we integrate the
photon TE , TM separable wavefunctions over the incident
plane between two interfaces. The result is:

e∫

c

b∫

a

|F (x, z)|2 dx dz
∣∣∣∣∣∣TE ,TM

photon
FTIR

=
∂φ

∂k

=

e∫

c

∣∣∣ψ(1)(z)
∣∣∣
2

dz

∣∣∣∣∣∣ barrier
quantum
tunneling

+
A
k
.

The photon dwell surface in that case is equal to particle
phase distance.

This relation is also valid for tunneling through the
waveguide. In the incident plane the Poynting vector P has
two components, one in x direction another in z direction.
There are at least two ways to calculate the change of
flow inside the air gap. Directly, by integrating ∇xPx +
∇zPz over the rectangular surface, from the divergence
theorem, or its variational version to evaluate the time-
average stored energy.

In both methods the x component is proportional to
e∫
c

|Uy(z)|2 dz while the z component to A.

We have come to the following conclusion:
The total phase φ contains the most general informa-

tion, a certain global information about all (lossless) chan-
nels. From the total phase we can separate parts respon-
sible for scattering in a given channel. It is possible to
assign sub-phases to the reflection and tunnelling (scat-
tering) channels. Such analysis shows that a certain part
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of the total phase φ defines the lateral shift therefore cal-
culation using ∂φ

∂k‖
cannot be correct.

It is easy to construct the dwell distance Ddwell
0 for

three different layers with refraction indexes n0 	= n1 	= n2

if we apply expression similarity steaming from mon-
odromy

Ddwell
0 (n0 	= n2) =

∫ e

c

∣∣∣ψ(1)(z)
∣∣∣
2

dz

=
L

2

(
1 − 1

σ2
f

)
|T |2

+

(
1 +

1
σ2

f

)
sinh(2κ1L)

4κ1
|T |2

=
L

2

(
1 − 1

σ2
f

)
|T |2

+
1
2

(
σf +

1
σf

)
sinh(κ1L)

cosh(κ1L)
κ1σf

|T |2

(34)

where σf = σTE
1,2 (see Eq. (18)) ∨ σf = σTM

1,2 (see Eq. (20)),
and |T |2 is given by equation (16) or (21) for TE wave
and (22) for TM wave.

Generalization is not so simple in case of the phase dis-
tance. For the asymmetric layers the reflection and tun-
neling amplitude phases are different.

In accordance to quantum mechanics we integrate
Maxwell-Schrödinger equations in both direction perpen-
dicular and parallel to layers (stratified media). This sug-
gests that Ddwell

0 in barrier tunneling should be related
to the penetration depth which can not be measured di-
rectly. Simplified geometry transforms that depth into the
observed d‖ distance. Such approximation is in agreement
with previous calculations based on setup with infinite
middle layer width. In reality the G-H shift should be
calculated from Px flow in accordance with the flux con-
servation.

Dphase
0 remains finite even for the wide middle layer.

In that limit the phase distance is the same for TE as well
as TM waves. Time related to the phase distance called
the phase time is base of superluminar considerations [24].

Physicists incline to conclusion about superiority of the
phase time over the dwell one. Our G-H shift theory shows
that Ddwell

0 not Dphase
0 has physical meaning. It seems now

impossible to attach Dphase
0 to any geometric distances.
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