Skip to main content
Log in

Auger decay and the direct double ionization probability of a 2p inner-shell hole in a singly charged Ar+ ion

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Single and double Auger decay processes of Ar+ 2p −1 hole levels belonging to the configurations of 2p 53s 23p 5 and 2p 53s3p 6 are investigated in the framework of perturbation theory implemented by the distorted wave approximation. The single Auger decay channels and rates are determined and the predicted total rates can differ by more than an order of magnitude for the levels of 2p 53s 23p 5, yet they are very close for levels belonging to 2p 53s3p 6. By combining the double photoionization cross sections of the neutral species, our theoretical Auger spectra of the single Auger decay process nicely interpreted a recent experiment [S.M. Huttula et al., Phys. Rev. Lett. 110, 113002 (2013)]. A configuration averaged branching ratio of 6.5% and 7.3% are predicted for the direct double Auger decay to the total probability for 2p 53s 23p 5 and 2p 53s3p 6, respectively, which is smaller than that of Ar 2p −1 hole states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.R. Kallman, P. Palmeri, Rev. Mod. Phys. 79, 79 (2007)

    Article  ADS  Google Scholar 

  2. J.Y. Dai, Y. Hou, J.M. Yuan, Phys. Rev. Lett. 104, 245001 (2010)

    Article  ADS  Google Scholar 

  3. U. Alkemper, J. Doppelfeld, F. von Busch, Phys. Rev. A 56, 2741 (1997)

    Article  ADS  Google Scholar 

  4. S. Brünken, Ch. Gerth, B. Kanngießer, T. Luhmann, M. Richter, P. Zimmermann, Phys. Rev. A 65, 042708 (2002)

    Article  ADS  Google Scholar 

  5. J. Viefhaus et al., Phys. Rev. Lett. 92, 083001 (2004)

    Article  ADS  Google Scholar 

  6. S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, K. Nagashima, Phys. Rev. Lett. 99, 043004 (2007)

    Article  ADS  Google Scholar 

  7. R. Guillemin et al., Phys. Rev. Lett. 109, 013001 (2012)

    Article  ADS  Google Scholar 

  8. J.M. Bizau, D. Cubaynes, M. Richter, F.J. Wuilleumier, J. Obert, J.C. Putaux, T.J. Morgan, E. Källne, S. Sorensen, A. Damany, Phys. Rev. Lett. 67, 576 (1991)

    Article  ADS  Google Scholar 

  9. S. Al Moussalami, J.M. Bizau, B. Rouvellou, D. Cubaynes, L. Journel, F.J. Wuilleumier, J. Obert, J.C. Putaux, T.J. Morgan, M. Richter, Phys. Rev. Lett. 76, 4496 (1996)

    Article  ADS  Google Scholar 

  10. A. Gottwald, Ch. Gerth, M. Richter, Phys. Rev. Lett. 82, 2068 (1999)

    Article  ADS  Google Scholar 

  11. S.M. Huttula, P. Lablanquie, L. Andric, J. Palaudoux, M. Huttula, S. Sheinerman, E. Shigemasa, Y. Hikosaka, K. Ito, F. Penent, Phys. Rev. Lett. 110, 113002 (2013)

    Article  ADS  Google Scholar 

  12. W. Ackermann et al., Nat. Photon. 1, 336 (2007)

    Article  ADS  Google Scholar 

  13. P. Emma et al., Nat. Photon. 4, 641 (2010)

    Article  ADS  Google Scholar 

  14. L. Young et al., Nature 466, 56 (2010)

    Article  ADS  Google Scholar 

  15. S.M. Vinko et al., Nature 482, 59 (2012)

    Article  ADS  Google Scholar 

  16. B. Rudek et al., Nat. Photon. 6, 858 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Fukuzawa et al., Phys. Rev. Lett. 110, 173005 (2013)

    Article  ADS  Google Scholar 

  18. L.J. Frasinski et al., Phys. Rev. Lett. 111, 073002 (2013)

    Article  ADS  Google Scholar 

  19. W.J. Xiang, C. Gao, Y.S. Fu, J.L. Zeng, J.M. Yuan, Phys. Rev. A 86, 061401(R) (2012)

    Article  ADS  Google Scholar 

  20. J.L. Zeng, P.F. Liu, W.J. Xiang, J.M. Yuan, Phys. Rev. A 87, 033419 (2013)

    Article  ADS  Google Scholar 

  21. J.L. Zeng, P.F. Liu, W.J. Xiang, J.M. Yuan, J. Phys. B 46, 215002 (2013)

    Article  ADS  Google Scholar 

  22. M.S. Pindzola, D.C. Griffin, Phys. Rev. A 36, 2628 (1987)

    Article  ADS  Google Scholar 

  23. M.F. Gu, Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  24. M.Ya. Amusia, I.S. Lee, V.A. Kilin, Phys. Rev. A 45, 4576 (1992)

    Article  ADS  Google Scholar 

  25. P. Lablanquie, S.M. Huttula, M. Huttula, L. Andric, J. Palaudoux, J.H.D. Eland, Y. Hikosaka, E. Shigemasa, K. Ito, F. Penent, Phys. Chem. Chem. Phys. 13, 18355 (2011)

    Article  Google Scholar 

  26. F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

    Article  ADS  Google Scholar 

  27. C.F. Fritzsche, J. Electron Spectrosc. Related Phenom. 114-116, 1155 (2001)

    Article  Google Scholar 

  28. C.F. Fritzsche, C.F. Fischer, G. Gaigalas, Comput. Phys. Commun. 148, 103 (2002)

    Article  ADS  MATH  Google Scholar 

  29. J.L. Zeng, J.M. Yuan, Phys. Rev. E 74, 025401(R) (2006)

    Article  ADS  Google Scholar 

  30. J.L. Zeng, J.M. Yuan, Phys. Rev. E 76, 026401 (2007)

    Article  ADS  Google Scholar 

  31. J.L. Zeng, J. Phys. B 41, 125702 (2008)

    Article  ADS  Google Scholar 

  32. J.L. Zeng, C. Gao, J.M. Yuan, Phys. Rev. E 82, 026409 (2010)

    Article  ADS  Google Scholar 

  33. M. Nakano, Y. Hikosaka, P. Lablanquie, F. Penent, S.M. Huttula, I.H. Suzuki, K. Soejima, N. Kouchi, K. Ito, Phys. Rev. A 85, 043405 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaolong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, Y., Zeng, J. et al. Auger decay and the direct double ionization probability of a 2p inner-shell hole in a singly charged Ar+ ion. Eur. Phys. J. D 68, 214 (2014). https://doi.org/10.1140/epjd/e2014-50124-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50124-5

Keywords

Navigation