Skip to main content
Log in

Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zeleny, Phys. Rev. 10, 1 (1917)

    Article  ADS  Google Scholar 

  2. G. Taylor, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 280, 383 (1964)

    Article  MATH  ADS  Google Scholar 

  3. D.P.H. Smith, IEEE Trans. Ind. Appl. IA-22, 527 (1986)

    Article  Google Scholar 

  4. I. Hayati, A.I. Bailey, T.F. Tadros, J. Colloid Interface Sci. 117, 205 (1987)

    Article  Google Scholar 

  5. I. Hayati, A. Bailey, T.F. Tadros, J. Colloid Interface Sci. 117, 222 (1987)

    Article  Google Scholar 

  6. M. Cloupeau, B. Prunet-Foch, J. Electrost. 25, 165 (1990)

    Article  Google Scholar 

  7. M. Cloupeau, B. Prunet-Foch, J. Electrost. 22, 135 (1989)

    Article  Google Scholar 

  8. D.-R. Chen, D.Y.H. Pui, S.L. Kaufman, J. Aerosol Sci. 26, 963 (1995)

    Article  Google Scholar 

  9. D.C. Taflin, T.L. Ward, E.J. Davis, Langmuir 5, 376 (1989)

    Article  Google Scholar 

  10. J.M. López-Herrera, A. Barrero, A. Boucard, I.G. Loscertales, M. Márquez, J. Am. Soc. Mass Spectrom. 15, 253 (2004)

    Article  Google Scholar 

  11. K. Tang, A. Gomez, J. Colloid Interface Sci. 175, 326 (1995)

    Article  Google Scholar 

  12. M. Cloupeau, B. Prunet-Foch, J. Aerosol Sci. 25, 1021 (1994)

    Article  Google Scholar 

  13. A. Jaworek, A. Krupa, J. Aerosol Sci. 30, 873 (1999)

    Article  Google Scholar 

  14. A.G. Bailey, Electrostatic Spraying of Liquids (Research Studies Press, John Wiley & Sons, Taunton, Somerset, England, New York, 1988)

  15. Z. Machala, L. Chládeková, M. Pelach, J. Phys. D: Appl. Phys. 43, 222001 (2010)

    Article  ADS  Google Scholar 

  16. Z. Machala, B. Tarabova, K. Hensel, E. Spetlikova, L. Sikurova, P. Lukes, Plasma Process. Polym. 10, 649 (2013)

    Article  Google Scholar 

  17. Z. Koval’ová, K. Tarabová, K. Hensel, Z. Machala, Eur. Phys. J. Appl. Phys. 61, 24306 (2013)

    Article  ADS  Google Scholar 

  18. Z. Koval’ová, M. Zahoran, A. Zahoranová, Z. Machala, J. Phys. D: Appl. Phys. 47, 224014 (2014)

    Article  ADS  Google Scholar 

  19. A.M. Gañán-Calvo, J. Dávila, A. Barrero, J. Aerosol Sci. 28, 249 (1997)

    Article  Google Scholar 

  20. J.F. De La Mora, A. Gomez, K. Tang, US Patent 5, 873 (1999)

    Google Scholar 

  21. M. Mutoh, S. Kaieda, K. Kamimura, J. Appl. Phys. 50, 3174 (1979)

    Article  ADS  Google Scholar 

  22. S. Kuroda, T. Horiuchi, Jpn J. Appl. Phys. 23, 1598 (1984)

    Article  ADS  Google Scholar 

  23. A. Barrero, A.M. Gañán-Calvo, J. Dávila, A. Palacios, E. Gómez-González, J. Electrost. 47, 13 (1999)

    Article  Google Scholar 

  24. J.F. De La Mora, J. Fluid Mech. 243, 561 (1992)

    Article  ADS  Google Scholar 

  25. N.R. Lindblad, J.M. Schneider, J. Sci. Instrum. 42, 635 (1965)

    Article  ADS  Google Scholar 

  26. R.P.A. Hartman, J.-P. Borra, D.J. Brunner, J.C.M. Marijnissen, B. Scarlett, J. Electrost. 47, 143 (1999)

    Article  Google Scholar 

  27. H.-H. Kim, J.-H. Kim, A. Ogata, J. Aerosol Sci. 42, 249 (2011)

    Article  Google Scholar 

  28. J.-P. Borra, P. Ehouarn, D. Boulaud, J. Aerosol Sci. 35, 1313 (2004)

    Article  Google Scholar 

  29. J.P. Borra, Y. Tombette, P. Ehouarn, J. Aerosol Sci. 30, 913 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav Pongrác.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pongrác, B., Kim, HH., Negishi, N. et al. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach. Eur. Phys. J. D 68, 224 (2014). https://doi.org/10.1140/epjd/e2014-50052-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50052-4

Keywords

Navigation