Skip to main content
Log in

Analytical model of ionization and energy deposition by proton beams in subcellular compartments

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.S. Loeffler, M. Durante, Nat. Rev. Clin. Oncol. 10, 411 (2013)

    Article  Google Scholar 

  2. F.A. Cucinotta, J.W. Wilson, R. Katz, W. Atwell, G.D. Badhwart, M.R. Shave, Adv. Space Res. 18, 183 (1996)

    Article  ADS  Google Scholar 

  3. A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)

    Article  ADS  Google Scholar 

  4. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D, submitted (2013), arXiv:1312.0897v1 [physics.bio-ph]

  5. L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    Article  ADS  Google Scholar 

  6. S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi, Ph. Moretto, Radiat. Prot. Dosim. 133, 2 (2009)

    Article  Google Scholar 

  7. Ph. Barberet, F. Vianna, M. Karamitros, T. Brun, N. Gordillo, Ph. Moretto, S. Incerti, H. Seznec, Phys. Med. Biol. 57, 2189 (2012)

    Article  Google Scholar 

  8. T.A. Carrillo-Cázares, E. Torres-García, Radiat. Prot. Dosim. 153, 411 (2013)

    Article  Google Scholar 

  9. M. Douglass, E. Bezak, S. Penfold, Med. Phys. 39, 3509 (2012)

    Article  Google Scholar 

  10. H.L. Byrne, A.L. McNamara, W. Domanova, S. Guatelli, Z. Kuncic, Phys. Med. Biol. 58, 1251 (2013)

    Article  Google Scholar 

  11. R.M. Thomson, Å. Carlsson Tedgren, J.F. Williamson, Phys. Med. Biol. 58, 1123 (2013)

    Article  Google Scholar 

  12. K.M. Prise, G. Schettino, M. Folkard, K. Held, Lancet Oncol. 6, 520 (2005)

    Article  Google Scholar 

  13. M. Bleicher, L. Burigo, M. Durante, M. Herrlitz, M. Krämer, I. Mishustin, I. Müller, F. Natale, I. Pshenichnov, S. Schramm, G. Taucher-Scholz, C. Wälzlein, Beilstein J. Nanotechnol. 3, 556 (2012)

    Article  Google Scholar 

  14. S.Q. Sun, S.-L. Shi, J.A. Hunt, R.D. Leapman, J. Microsc. 177, 18 (1995)

    Article  Google Scholar 

  15. ICRU, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, International Commission on Radiation Units and Measurements, Report 46 (Bethesda, MD, 1992)

  16. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)

    Article  ADS  Google Scholar 

  17. R. Garcia-Molina, I. Abril, C.D. Denton, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Nucl. Instrum. Methods B 267, 2647 (2009)

    Article  ADS  Google Scholar 

  18. H. Hayashi, N. Watanabe, Y. Udagawa, C.-C. Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000)

    Article  ADS  Google Scholar 

  19. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

  20. M.A. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)

  21. R. Garcia-Molina, I. Abril, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Phys. Med. Biol. 56, 6475 (2011)

    Article  Google Scholar 

  22. R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, in Fast Ion-Atom and Ion-Molecule Collisions, edited by Dž. Belkic (World Scientific Publishing Company, Singapore, 2012)

  23. M.A. Xapsos, Radiat. Res. 132, 282 (1992)

    Article  Google Scholar 

  24. ICRU, Linear Energy Transfer, International Commission on Radiation Units and Measurements, Report 16 (Bethesda, MD, 1970)

  25. E. Scifoni, E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 60, 115 (2010)

    Article  ADS  Google Scholar 

  26. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 245 (2012)

    Article  ADS  Google Scholar 

  27. M.P.R. Waligórski, R.N. Hamm, R. Katz, Nucl. Tracks Radiat. Meas. 11, 309 (1986)

    Article  Google Scholar 

  28. D. Emfietzoglou, K. Karava, G. Papamichael, M. Moscovitch, Radiat. Prot. Dosim. 110, 871 (2004)

    Article  Google Scholar 

  29. J. Lindhard, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 1 (1954)

    MathSciNet  Google Scholar 

  30. R.H. Ritchie, Phys. Rev. 114, 644 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001)

    Article  Google Scholar 

  32. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    Article  ADS  Google Scholar 

  33. P. de Vera, I. Abril, R. Garcia-Molina, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012015 (2013)

    ADS  Google Scholar 

  34. N.D. Mermin, Phys. Rev. B 1, 2362 (1970)

    Article  ADS  Google Scholar 

  35. S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)

    Article  ADS  Google Scholar 

  36. R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor, M.C. Fuss (Springer, Dordrecht, 2012)

  37. I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, D. Emfietzoglou, Adv. Quant. Chem. 65, 129 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo de Vera.

Additional information

Contribution to the Topical Issue “Nano-scale Insights into Ion-beam Cancer Therapy”, edited by Andrey V. Solov’yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vera, P., Surdutovich, E., Abril, I. et al. Analytical model of ionization and energy deposition by proton beams in subcellular compartments. Eur. Phys. J. D 68, 96 (2014). https://doi.org/10.1140/epjd/e2014-50041-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50041-7

Keywords

Navigation