Skip to main content
Log in

Characteristics of hydrogen bond revealed from water clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n (n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Pugliano, R. Saykally, Science 257, 1937 (1992)

    Article  ADS  Google Scholar 

  2. R.N. Pribble, T.S. Zwier, Science 265, 75 (1994)

    Article  ADS  Google Scholar 

  3. F. Huisken, M. Kaloudis, A. Kulcke, J. Chem. Phys. 104, 17 (1996)

    Article  ADS  Google Scholar 

  4. J.D. Cruzan, L.B. Braly, K. Liu, R.J. Saykally, Science 271, 59 (1996)

    Article  ADS  Google Scholar 

  5. M.R. Viant, J.D. Cruzan, M.G. Brown, R.J. Saykally, J. Phys. Chem. A 101, 9032 (1997)

    Article  Google Scholar 

  6. K. Kim, K.D. Jordan, T.S. Zwier, J. Am. Chem. Soc. 116, 11568 (1994)

    Article  Google Scholar 

  7. K. Liu, M.B. Brown, C. Carter, R.J. Saykally, Nature 381, 501 (1996)

    Article  ADS  Google Scholar 

  8. K. Liu, M.B. Brown, R.J. Saykally, J. Phys. Chem. A 101, 8995 (1997)

    Article  Google Scholar 

  9. K. Nauta, R.E. Miller, Science 287, 293 (2000)

    Article  ADS  Google Scholar 

  10. J. Brudermann, M. Melzer, U. Buck, J.K. Kazimirski, J. Sadlej, V. Bush, J. Chem. Phys. 110, 10649 (1999)

    Article  ADS  Google Scholar 

  11. W.B. Blanton, S.W. Gordon-Wylie, G.R. Clark, K.D. Jordan, J. Am. Chem. Soc. 121, 3551 (1999)

    Article  Google Scholar 

  12. U. Buck, I. Ettischer, M. Melzer, V. Buch, J. Sadlej, Phys. Rev. Lett. 80, 2578 (1998)

    Article  ADS  Google Scholar 

  13. C.J. Gruenloh, J.R. Carney, C.A. Arrington, T.S. Zwier, S.Y. Fredericks, K.D. Jordan, Science 276, 1678 (1997)

    Article  Google Scholar 

  14. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  15. C.J. Burnham, S.S. Xantheas, J. Chem. Phys. 116, 5115 (2002)

    Article  ADS  Google Scholar 

  16. C. Tsai, K. Jordan, J. Phys. Chem. 97, 5208 (1993)

    Article  Google Scholar 

  17. B. Hartke, Phys. Chem. 214, 1251 (2000)

    Google Scholar 

  18. H. Kabrede, Chem. Phys. Lett. 430, 336 (2006)

    Article  ADS  Google Scholar 

  19. H. Takeuchi, J. Chem. Inf. Model. 48, 2226 (2008)

    Article  Google Scholar 

  20. S. Kazachenko, A.J. Thakkar, Chem. Phys. Lett. 476, 120 (2009)

    Article  ADS  Google Scholar 

  21. B. Hartke, Phys. Chem. Chem. Phys. 5, 275 (2003)

    Article  MathSciNet  Google Scholar 

  22. D.J. Wales, M.P. Hodges, Chem. Phys. Lett. 286, 65 (1998)

    Article  ADS  Google Scholar 

  23. H. Kabrede, R. Hentschke, J. Phys. Chem. B 107, 3914 (2003)

    Article  Google Scholar 

  24. T. James, D.J. Wales, Chem. Phys. Lett. 415, 302 (2005)

    Article  ADS  Google Scholar 

  25. J.K. Kazimirski, V. Buch, J. Phys. Chem. A 107, 9762 (2003)

    Article  Google Scholar 

  26. F.Y. Li, Y. Liu, L. Wang, J.J. Zhao, Z. Chen, Theor. Chem. Acc. 131, 1163 (2012)

    Article  Google Scholar 

  27. J.A. Niesse, H.R. Mayne, J. Comput. Chem. 18, 1233 (1997)

    Article  Google Scholar 

  28. B. Santra, A. Michaelides, J. Chem. Phys. 127, 184104 (2007)

    Article  ADS  Google Scholar 

  29. M.E. Dunn, E.K. Pokon, G.C. Shields, J. Am. Chem. Soc. 126, 2647 (2004)

    Article  Google Scholar 

  30. B. Hartke, M. Schütz, H. Werner, J. Chem. Phys. 239, 561 (1998)

    Google Scholar 

  31. P.N. Day, R. Pachter, M.S. Gordon, G.N. Merrill, J. Chem. Phys. 112, 2063 (2000)

    Article  ADS  Google Scholar 

  32. J. Kim, K.S. Kim, J. Chem. Phys. 109, 5886 (1998)

    Article  ADS  Google Scholar 

  33. S.S. Xantheas, C.J. Burnham, R.J. Harrison, J. Chem. Phys. 116, 1493 (2002)

    Article  ADS  Google Scholar 

  34. H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, J. Chem. Phys. 112, 9759 (2000)

    Article  ADS  Google Scholar 

  35. R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, G.C. Shields, J. Phys. Chem. A 114, 11725 (2010)

    Article  Google Scholar 

  36. J. Sadlej, V. Buch, J. Kazimirski, U. Buck, J. Phys. Chem. A 103, 4933 (1999)

    Article  Google Scholar 

  37. C.J. Burnham, J. Li, S.S. Xantheas, M. Leslie, J. Chem. Phys. 110, 4566 (1999)

    Article  ADS  Google Scholar 

  38. P. Qian, L.N. Lu, W. Song, Z.Z. Yang, Theor. Chem. Acc. 123, 487 (2009)

    Article  Google Scholar 

  39. S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, J. Phys. Chem. A 105, 10525 (2001)

    Article  Google Scholar 

  40. J.R. Hammond, N. Govind, K. Kowalski, J. Autschbach, S.S. Xantheas, J. Chem. Phys. 131, 214103 (2009)

    Article  ADS  Google Scholar 

  41. S. Yoo, E. Apra, X.C. Zeng, S.S. Xantheas, J. Phys. Chem. Lett. 1, 3122 (2010)

    Article  Google Scholar 

  42. J. Sadlej, Chem. Phys. Lett. 333, 485 (2001)

    Article  ADS  Google Scholar 

  43. S. Bulusu, S. Yoo, E. Apra, S. Xantheas, X.C. Zeng, J. Phys. Chem. A 110, 11781 (2006)

    Article  Google Scholar 

  44. A. Lagutschenkov, G.S. Fanourgakis, G. Niedner-Schatteburg, S.S. Xantheas, J. Chem. Phys. 122, 194310 (2005)

    Article  ADS  Google Scholar 

  45. A. Khan, J. Chem. Phys. 106, 5537 (1997)

    Article  ADS  Google Scholar 

  46. A. Khan, J. Phys. Chem. A 103, 1260 (1999)

    Article  Google Scholar 

  47. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)

    Article  ADS  Google Scholar 

  48. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)

    Article  MATH  ADS  Google Scholar 

  49. M.J. Frisch et al., Gaussian 03, revision B.03 (Gaussian, Inc., Pittsburgh, 2003)

  50. F. Weinhold, R.A. Klein, Chem. Educ. Res. Pract. 15, 276 (2014)

    Article  Google Scholar 

  51. F. Weinhold, R.A. Klein, Mol. Phys. 110, 565 (2012)

    Article  ADS  Google Scholar 

  52. J. Zhang, P.C. Chen, B.K. Yuan, W. Ji, Z.H. Cheng, X.H. Qiu, Science 342, 611 (2013)

    Article  ADS  Google Scholar 

  53. P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent Developments in Theory and Experiments (North Holland Publishing Co., Amsterdam, 1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Chen, H., Zhang, C. et al. Characteristics of hydrogen bond revealed from water clusters. Eur. Phys. J. D 68, 242 (2014). https://doi.org/10.1140/epjd/e2014-50027-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50027-5

Keywords

Navigation