Skip to main content
Log in

Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have studied the formation of negative ions in a negative Corona Discharge (CD) fed by CO2/N2 mixtures (with 0, 2, 4, 6, 8, 10% N2) using the technique of ion mobility spectrometry-orthogonal acceleration time of flight mass spectrometry (IMS-oaTOF). The composition of the negative ions was found to be dependent on the initial gas composition, the gas flow regime, the concentrations of neutral reactive species formed in the discharge and the trace amounts on water in the gases were found to play an important role in the negative ions formation. In a pure CO2 discharge operating under standard gas flow conditions of IMS (associated with strong interaction of ions with neutral reactive species formed in discharge) the ions CO3 (H2O) and CO4 (H2O) dominated the measured negative ion spectrum while in CO2/N2 mixtures NO3 (H2O) n , NO3 (HNO3) (n = 0, 1) ions prevailed. In the case of reverse gas flow regime (low interaction of ions with neutral reactive species formed in discharge), the negative ions detected were O2 (H2O) n , and O2 .CO2(H2O) n both in pure CO2 and N2/CO2 mixtures. The spectra of negative ions recorded for a gas mixture containing 4% N2 in CO2 were compared with theoretical predictions of negative ion composition in the lower atmosphere of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cenian, A. Chernukho, V. Borodin, Contrib. Plasma Phys. 35, 273 (1995)

    Article  ADS  Google Scholar 

  2. M.A. Malik, X.Z. Jiang, Plasma Chem. Plasma Process. 19, 505 (1999)

    Article  Google Scholar 

  3. M.-W. Li, G.-H. Xu, Y.-L. Tian, L. Chen, H.-F. Fu, J. Phys. Chem. A 108, 1687 (2004)

    Google Scholar 

  4. A. Seiff, D. Kirk, J. Geophys. Res. 82, 4364 (1977)

    Article  ADS  Google Scholar 

  5. J.L. Moruzzi, A.V. Phelps, J. Chem. Phys. 45, 4617 (1966)

    ADS  Google Scholar 

  6. H. Shields, A.L.S. Smith, B. Norris, J. Phys. D 9, 1587 (1976)

    Article  ADS  Google Scholar 

  7. G.J. Molina-Cuberos, H. Lichtenegger, K. Schwingenschuh, J.J. Lopez-Moreno, R. Rodrigo, J. Geophys. Res. 107, 5027 (2002)

    Article  Google Scholar 

  8. M. Sabo, S. Matejcik, Anal. Chem. 84, 5327 (2012)

    Article  Google Scholar 

  9. V. Sheel, S.A. Haider, Planet. Space Sci. 63-64, 94 (2012)

    Article  ADS  Google Scholar 

  10. J. Fritzenwallner, E. Kopp, Adv. Space Res. 21, 891 (1998)

    Article  ADS  Google Scholar 

  11. P. Watts, Int. J. Mass Spectrom. Ion Process. 121, 141 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. N.G. Adams, D.K. Bohme, D.B. Dunkin, F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 52, 3133 (1970)

    ADS  Google Scholar 

  13. H.W. Ellis, R.Y. Pai, I.R. Gatland, E.W. McDaniel, R. Wernlund, M.J. Cohen, J. Chem. Phys. 64, 3935 (1978)

    ADS  Google Scholar 

  14. K. Nagato, Y. Matsui, T. Miyata, T. Yamauchi, Int. J. Mass Spectrom. 248, 142 (2006)

    ADS  Google Scholar 

  15. F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 61, 3181 (1974)

    ADS  Google Scholar 

  16. M. Michael, M. Barani, S.N. Tripathi, Geophys. Res. Lett. 34, L04201 (2007)

    Article  ADS  Google Scholar 

  17. W.J. Borucki, Z. Levin, R.C. Whitten, R.G. Keesee, L.A. Capone, O.B. Toon, J. Dubach, Icarus 51, 302 (1982)

    Article  ADS  Google Scholar 

  18. H.W. Ellis, R.Y. Pai, E.W. McDaniel, At. Data Nucl. Data Tables 17, 177 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Matejčík.

Additional information

Contribution to the Topical Issue “Astrochemical Processes and Evolutionary Modelling for Stars and Planetary Systems”, edited by Serena Viti, Franco A. Gianturco and Nigel Mason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabo, M., Lichvanová, Z., Orszagh, J. et al. Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry. Eur. Phys. J. D 68, 216 (2014). https://doi.org/10.1140/epjd/e2014-40836-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40836-9

Keywords

Navigation