Skip to main content
Log in

Theoretical investigation of the binding of a positron to vibrational excited states of hydrogen cyanide molecule

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically analyzed positron affinities (PA) of hydrogen cyanide (HCN) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of a positron to the molecule. Using the configuration interaction method in the multi-component molecular orbital theory and anharmonic vibrational state analysis with the variational Monte Carlo technique, we found that the vibrational excitations of the CN and CH stretching modes enhance the PA value compared to that of the vibrational ground state, whereas the excitation of bending mode deenhances it. The largest PA enhancement is found at the excited states of the CH stretching mode; the PA values are 43.02 (1) and 46.34 (2) meV for the fundamental tone and overtone states, respectively. With the linear regression analysis, we confirmed that the PA variation of HCN molecule at each vibrational state arises from the variation of permanent dipole moment and dipole-polarizability due to each vibrational excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Charlton, J.W. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001)

  2. P.G. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000)

  3. D.W. Gidley, D.Z. Chi, W.D. Wang, R.S. Vallery, Annu. Rev. Mater. Sci. 36, 49 (2006)

    Article  ADS  Google Scholar 

  4. C.M. Surko, G.F. Gribakin, S.J. Buckman, J. Phys. B 38, R57 (2005)

    Article  ADS  Google Scholar 

  5. J.R. Danielson, J.A. Young, C.M. Surko, J. Phys. B 42, 235203 (2009)

    Article  ADS  Google Scholar 

  6. J.A. Young, C.M. Surko, Phys. Rev. A 77, 052704 (2008)

    Article  ADS  Google Scholar 

  7. J.A. Young, C.M. Surko, Phys. Rev. A 78, 032702 (2008)

    Article  ADS  Google Scholar 

  8. O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967)

    Article  ADS  Google Scholar 

  9. P.E. Cade, A. Farazdel, J. Chem. Phys. 66, 2598 (1977)

    Article  ADS  Google Scholar 

  10. M. Tachikawa, K. Mori, K. Suzuki, K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)

    Article  Google Scholar 

  11. M. Tachikawa, H. Sainowa, K. Iguchi, K. Suzuki, J. Chem. Phys. 101, 5925 (1994)

    Article  ADS  Google Scholar 

  12. T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, K. Suzuki, J. Phys. Chem. 100, 6057 (1994)

    Article  Google Scholar 

  13. S.L. Saito, F. Sasaki, J. Chem. Phys. 102, 8040 (1995)

    Article  ADS  Google Scholar 

  14. M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)

    Article  ADS  Google Scholar 

  15. M.W.J. Bromley, J. Mitroy, Phys. Rev. A 65, 062505 (2002)

    Article  ADS  Google Scholar 

  16. M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 119, 5005 (2003)

    Article  ADS  Google Scholar 

  17. M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 121, 9191 (2004)

    Article  ADS  Google Scholar 

  18. K. Strasburger, Struct. Chem. 15, 415 (2004)

    Article  Google Scholar 

  19. H. Chojnacki, K. Strasburger, Mol. Phys. 104, 2273 (2006)

    Article  ADS  Google Scholar 

  20. R.J. Buenker, H.-P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura, J. Phys. Chem. A 109, 5956 (2005)

    Article  Google Scholar 

  21. F.A. Gianturco, J. Franz, R.J. Buenker, H.-P. Liebermann, L. Pichl, J.-M. Rost, M. Tachikawa, M. Kimura, Phys. Rev. A 73, 022705 (2006)

    Article  ADS  Google Scholar 

  22. K. Strasburger, J. Chem. Phys. 114, 00615 (2001)

    Article  ADS  Google Scholar 

  23. S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)

    Article  ADS  Google Scholar 

  24. J. Mitroy, Phys. Rev. A 73, 054502 (2006)

    Article  ADS  Google Scholar 

  25. D.M. Schrader, T. Yoshida, K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992)

    Article  ADS  Google Scholar 

  26. D.M. Schrader, T. Yoshida, K. Iguchi, J. Chem. Phys. 98, 7185 (1993)

    Article  ADS  Google Scholar 

  27. N. Jiang, D.M. Schrader, J. Chem. Phys. 109, 9430 (1998)

    Article  ADS  Google Scholar 

  28. D. Bressanini, M. Mella, G. Morosi, J. Chem. Phys. 108, 4756 (1998)

    Article  ADS  Google Scholar 

  29. M. Mella, M. Casalegno, G. Morosi, J. Chem. Phys. 117, 1450 (2002)

    Article  ADS  Google Scholar 

  30. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009)

    Article  ADS  Google Scholar 

  31. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011)

    Article  ADS  Google Scholar 

  32. J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010)

    Article  ADS  Google Scholar 

  33. J.R. Danielson, A.C.L. Jones, J.J. Gosselin, M.R. Natisin, C.M. Surko, Phys. Rev. A 85, 022709 (2012)

    Article  ADS  Google Scholar 

  34. M. Tachikawa, Y. Kita, R.J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)

    Article  Google Scholar 

  35. B.L. Hammond, W.A. Lester Jr., P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, Singapore, 1994)

  36. J.K.G. Watson, Mol. Phys. 15, 479 (1968)

    Article  ADS  Google Scholar 

  37. T. Watanabe, Trans. Jpn Soc. Ind. Appl. Math. 1, 101 (1991)

    Google Scholar 

  38. J.M. Bowman, J. Chem. Phys. 68, 608 (1977)

    Article  ADS  Google Scholar 

  39. J. Toulouse, C.J. Umrigar, J. Chem. Phys. 126, 084102 (2007)

    Article  ADS  Google Scholar 

  40. J. Toulouse, C.J. Umrigar, J. Chem. Phys. 128, 174101 (2008)

    Article  ADS  Google Scholar 

  41. M.J. Frisch et al., GAUSSIAN 03, Revision E.01 (Gaussian Inc., Wallingford CT, 2004)

  42. G.Ch. Mellau, J. Chem. Phys. 134, 234303 (2011)

    Article  ADS  Google Scholar 

  43. K.M. Christoffel, J.M. Bowman, Chem. Phys. Lett. 85, 220 (1982)

    Article  ADS  Google Scholar 

  44. A.B. McCoy, Int. Rev. Phys. Chem. 25, 77 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiumi Kita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kita, Y., Tachikawa, M. Theoretical investigation of the binding of a positron to vibrational excited states of hydrogen cyanide molecule. Eur. Phys. J. D 68, 116 (2014). https://doi.org/10.1140/epjd/e2014-40799-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40799-9

Keywords

Navigation