Skip to main content
Log in

Structure, energetic and phase transition of small nickel-palladium heterogeneous clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation (MD) with Sutton-Chen potential for palladium-palladium, nickel-nickel and palladium-nickel interactions has been used to generate the minimum energy structures and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ni n Pd(13−n) for n ≤ 13. Thirteen particle icosahedral clusters of neat palladium and nickel atoms were first reproduced accordingly with the results in literature. Then in the palladium icosahedra, each palladium atom has been successively replaced by nickel atom. Calculation is repeated for both palladium-centered and nickel-centered clusters. It is found that the nickel-centered clusters are more stable than the palladium-centered clusters and cohesive energy increases along the palladium end to nickel end. Phase transition of each cluster from one end-species to the other end-species is studied by means of caloric curve, root mean square bond fluctuation and heat capacity. Trend in variation of melting temperature is opposite to the energy trend. Palladium-centered cluster shows a premelting at low temperature due to the solid-solid structural transition. Species-centric order parameters developed by Hewage and Amar is used to understand the dynamic behavior in the solid-solid transition of palladium-centered cluster to more stable nickel-centered cluster (premelting). This species-centric order parameter calculation further confirmed the stability of nickel-centered species over those of palladium-centered species and solid-solid structural transition at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tchaplyguine, M. Lundwall, M. Gisselbrecht, G. Öhrwall, R. Feifel, S. Sorensen, N. Mårtensson, O. Björneholm, Phys. Rev. A 69, 031201 (2004)

    Article  ADS  Google Scholar 

  2. F. Aguilera-Granja, A. Vega, J. Rogan, X. Andrade, G. García, Phys. Rev. B 74, 224405 (2006)

    Article  ADS  Google Scholar 

  3. J.W. Hewage, F.G. Amar, J. Chem. Phys. 119, 9021 (2003)

    Article  ADS  Google Scholar 

  4. J.W. Hewage, W.L. Rupika, F.G. Amar, Eur. Phys. J. D 66, 282 (2012)

    Article  ADS  Google Scholar 

  5. C.L. Cleveland, U. Landman, J. Chem. Phys. 94, 7376 (1991)

    Article  ADS  Google Scholar 

  6. S.M. Lang, T.M. Bernhardt, ChemPhysChem 11, 1570 (2010)

    Article  Google Scholar 

  7. J. Tuaillon, V. Dupuis, P. Mélinon, B. Prével, M. Treilleux, A. Perez, M. Pellarin, J.L. Vialle, M. Broyer, Philos. Mag. A 76, 493 (1997)

    Article  ADS  Google Scholar 

  8. V. Pokhmurskii, V. Kopylets, S. Korniy, Condens. Matter Phys. 9, 773 (2006)

    Article  Google Scholar 

  9. H.M. Duan, X.G. Gong, Q.Q. Zheng, H.Q. Lin, J. Appl. Phys. 89, 7308 (2001)

    Article  ADS  Google Scholar 

  10. R. Fourniera, J. Chem. Phys. 115, 2165 (2001)

    Article  ADS  Google Scholar 

  11. B. Chen, M.A. Gomez, M. Sehl, J.D. Doll, D.L. Freeman, J. Chem. Phys. 105, 9686 (1996)

    Article  ADS  Google Scholar 

  12. K. Lee, Phys. Rev. B 58, 2391 (1998)

    Article  ADS  Google Scholar 

  13. T.H. Upton, W.A. Goddard III, J. Vac. Sci. Technol. 16, 531 (1979)

    Article  ADS  Google Scholar 

  14. M.B. Knickelbein, J. Chem. Phys. 116, 9703 (2002)

    Article  ADS  Google Scholar 

  15. T.C. Stamatatos, A. Escuer, K.A. Abboud, C.P. Raptopoulou, S.P. Perlepes, G. Christou, Inorg. Chem. 47, 11825 (2008)

    Article  Google Scholar 

  16. A. Escuer, J. Esteban, O. Roubeau, Inorg. Chem. 50, 8893 (2011)

    Article  Google Scholar 

  17. R. Fournier, D.R. Salahub, Int. J. Quantum Chem. 29, 1077 (1986)

    Article  Google Scholar 

  18. A.J. Cox, J.G. Lauderbac, L.A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993)

    Article  ADS  Google Scholar 

  19. J.G. Louderback, A.J. Cox, L.J. Lising, D.C. Douglass, L.A. Bloomfield, Z. Phys. D 26, 301 (1993)

    Article  ADS  Google Scholar 

  20. E. Carvajal, O. Hahn-Herrera, E. Orgaz, Rev. Mex. Fis. 55, 418 (2009)

    Google Scholar 

  21. H. Burghgraef, A.P. Jansen, R.A. van Santen, Surf. Sci. 324, 345 (1995)

    Article  ADS  Google Scholar 

  22. C. Mottet, J. Goniakowski, F. Baletto, R. Ferrando, G. Treglia, Phase Transitions 77, 101 (2004)

    Article  Google Scholar 

  23. J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, Surf. Sci. Rep. 56, 189 (2005)

    Article  ADS  Google Scholar 

  24. G. Guzmán-Ramírez, J. Robles, A. Vega, F. Aguilera-Granja, J. Chem. Phys. 134, 054101 (2011)

    Article  ADS  Google Scholar 

  25. H. Arslan, M.H. Güven, New. J. Phys. 7, 240 (2005)

    Article  Google Scholar 

  26. F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. Lett. 90, 135504 (2003)

    Article  ADS  Google Scholar 

  27. F. Dong, S. Heinbuch, Y. Xie, J.J. Rocca, E.R. Bernstein, Phys. Chem. Chem. Phys. 12, 2569 (2010)

    Article  Google Scholar 

  28. Y. Xie, F. Dong, S.J. Heinbuch, J.J. Rocca, E.R. Bernstein, Phys. Chem. Chem. Phys. 12, 947 (2010)

    Article  Google Scholar 

  29. F. Dong, S. Heinbuch, Y. Xie, J.J. Rocca, E.R. Bernstein, J. Phys. Chem. A 113, 3029 (2009)

    Article  Google Scholar 

  30. Y. Xie, F. Dong, S.J. Heinbuch, J.J. Rocca, E.R. Bernstein, J. Chem. Phys. 130, 114306 (2009)

    Article  ADS  Google Scholar 

  31. W. Xue, Z.C. Wang, S.G. He, Y. Xie, E.R. Bernstein, J. Am. Chem. Soc. 130, 15879 (2008)

    Article  Google Scholar 

  32. Z.C. Wang, W. Xue, Y.P. Ma, X.L. Ding, S.G. He, F. Dong, S. Heinbuch, J.J. Rocca, E.R. Bernstein, J. Phys. Chem. A 112, 5984 (2008)

    Article  Google Scholar 

  33. Y. Xie, S.G. He, E.R. Bernstein, J. Chem. Phys. 128, 044306 (2008)

    Article  ADS  Google Scholar 

  34. F. Studt, F.A. Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, J.K. Nørskov, Science 320, 1320 (2008)

    Article  ADS  Google Scholar 

  35. E. Cottancin, M. Gaudry, M. Pellarin, J. Lermé, L. Arnaud, J.R. Huntzinger, J.L. Vialle, M. Treilleux, P. Mélinon, J.-L. Rousset, M. Broyer, Eur. Phys. J. D 24, 111 (2003)

    Article  ADS  Google Scholar 

  36. M.T. Reetz, R. Breinbauer, K. Wannlnger, Tetrahedron Lett. 37, 4499 (1996)

    Article  Google Scholar 

  37. L.D. Pachón, M.B. Thathagar, F. Hartl, G. Rothenberg, Phys. Chem. Chem. Phys. 8, 151 (2006)

    Article  Google Scholar 

  38. H.Y. Kim, S.H. Lee, H.G. Kim, J. Ryu, H.M. Lee, Mater. Trans. 48, 455 (2007)

    Article  Google Scholar 

  39. F.R. Negreiros, Z. Kuntová, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli, J. Chem. Phys. 132, 234703 (2010)

    Article  ADS  Google Scholar 

  40. M. Harb, F. Rabilloud, D. Simon, J. Chem. Phys. 131, 174302 (2009)

    Article  ADS  Google Scholar 

  41. M. Harb, F. Rabilloud, D. Simon, Phys. Chem. Chem. Phys. 12, 4246 (2010)

    Article  Google Scholar 

  42. G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B.C. Curley, J. Chem. Phys. 122, 194309 (2005)

    Article  ADS  Google Scholar 

  43. H.Y. Kim, H.G. Kim, J.H. Ryu, H.M. Lee, Phys. Rev. B 75, 212105 (2007)

    Article  ADS  Google Scholar 

  44. A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)

    Article  ADS  Google Scholar 

  45. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  46. S.K. Nayak, S.N. Khanna, P. Jena, J. Phys.: Condens. Matter 10, 10853 (1998)

    ADS  Google Scholar 

  47. B.D. Todd, R.M. Lynden-Bell, Surf. Sci. 281, 191 (1993)

    Article  ADS  Google Scholar 

  48. J.P.K. Doye, D.J. Wales, New. J. Chem. 22, 733 (1998)

    Article  Google Scholar 

  49. A. White, Aeronautical and Maritime Research Laboratory, Report No. DSTO-TN-0302, 2000

  50. C.W. Gear, Argonne National Laboratory, Report No. ANL-7126, 1996

  51. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1971)

  52. D. Frankel, B. Smit, Understanding Molecular Simulations, 2nd edn. (Academic Press, San Diego, 2001)

  53. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989)

  54. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, New York, 1986)

  55. F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982)

    Article  ADS  Google Scholar 

  56. D.M. Gay, DMNFB Routine for Unconstrained Optimization (NETLIB, 1980)

  57. J. Jellinek, T.L. Beck, R.S. Berry, J. Chem. Phys. 84, 2783 (1986)

    Article  ADS  Google Scholar 

  58. F.G. Amar R.S. Berry, J. Chem. Phys. 85, 5943 (1986)

    Article  ADS  Google Scholar 

  59. C.L. Briant, J.J. Burton, J. Chem. Phys. 63, 2045 (1975)

    Article  ADS  Google Scholar 

  60. M. Bixon, J. Jortner, J. Chem. Phys. 91, 1631 (1989)

    Article  ADS  Google Scholar 

  61. F.G. Amar, in Proceedings of the Erinco Fermi International Summer School, edited by G. Scoles (North-Holland, Amsterdam, 1990), Vol. 107, p. 99

  62. J.B. Kaelberer, R.D. Etters, J. Chem. Phys. 66, 3233 (1977)

    Article  ADS  Google Scholar 

  63. H. Arslan, M.H. Güven, New J. Phys. 7, 60 (2005)

    Article  ADS  Google Scholar 

  64. M. Buchner, B.M. Ladanyi, R.M. Stratt, J. Chem. Phys. 97, 8522 (1992)

    Article  ADS  Google Scholar 

  65. C.H. Bennett, J. Comput. Phys. 22, 245 (1976)

    Article  ADS  Google Scholar 

  66. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989)

    Article  ADS  Google Scholar 

  67. P. Labastie, R.L. Whetten, Phys. Rev. Lett. 65, 1567 (1990)

    Article  ADS  Google Scholar 

  68. F.G. Amar, M.S.S. Weerasinghe, in Proceedings of the 24th Jerusalem Quantum Chemistry Symposium, edited by J. Jortner, R. Levine, B. Pullman (Kluwer Academic, Dordrecht, 1991), p. 165

  69. S. Weerasinghe, F.G. Amar, J. Chem. Phys. 98, 4967 (1993)

    Article  ADS  Google Scholar 

  70. M. Watanabe, W.P. Remhardt, Phys. Rev. Lett. 65, 3301 (1990)

    Article  ADS  Google Scholar 

  71. F. Calvo, P. Labastie, Chem. Phys. Lett. 247, 395 (1995)

    Article  ADS  Google Scholar 

  72. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  73. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  74. J.W. Hewage, Ph.D. thesis, University of Maine, 2002

  75. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  76. J.S. van Duijneveldt, D. Frankel, J. Chem. Phys. 96, 4655 (1992)

    Article  ADS  Google Scholar 

  77. R.M. Lynden-Bell, J.S. van Duijneveldt, D. Frankel, Mol. Phys. 80, 801 (1993)

    Article  ADS  Google Scholar 

  78. R.M. Lynden-Bell, D.J. Wales, J. Chem. Phys. 101, 1460 (1994)

    Article  ADS  Google Scholar 

  79. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  80. J.L. Rousset, J.C. Bertolini, P. Miegge, Phys. Rev. B 53, 4947 (1996)

    Article  ADS  Google Scholar 

  81. L.V. Pourovskii, A.V. Ruban, I.A. Abrikosov, Y.Kh. Vekilov, B. Johansson, Phys. Rev. B 64, 035421 (2001)

    Article  ADS  Google Scholar 

  82. M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, L. Arnaud, J.R. Huntzinger, J.-L. Vialle, M. Broyer, J.L. Rousset, M. Treilleux, P. Mélinon, Phys. Rev. B 67, 155409 (2003)

    Article  ADS  Google Scholar 

  83. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004)

    Article  ADS  Google Scholar 

  84. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck, R.L. Johnston, J. Chem. Phys. 122, 194308 (2005)

    Article  ADS  Google Scholar 

  85. S.P. Huang, P.B. Balbuena, J. Phys. Chem. B 106, 7225 (2002)

    Article  Google Scholar 

  86. J.L. Rodríguez-López, J.M. Montejano-Carrizales, U. Pal, J.F. Sánchez-Ramírez, H.E. Troiani, D. García, M. Miki-Yoshida, M. José-Yacamán, Phys. Rev. Lett. 92, 196102 (2004)

    Article  ADS  Google Scholar 

  87. C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Phys. Rev. Lett. 95, 035501 (2005)

    Article  ADS  Google Scholar 

  88. S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 71, 195415 (2005)

    Article  ADS  Google Scholar 

  89. S. Zamith, P. Labastie, F. Chirot, J.-M. L’Hermite, J. Chem. Phys. 134, 129902 (2011)

    Article  ADS  Google Scholar 

  90. S. Nieves-Torres, E. Mob, G.E. Lopez, Mater. Chem. Phys. 129, 580 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinasena W. Hewage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewage, J.W. Structure, energetic and phase transition of small nickel-palladium heterogeneous clusters. Eur. Phys. J. D 68, 143 (2014). https://doi.org/10.1140/epjd/e2014-40795-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40795-1

Keywords

Navigation