Skip to main content
Log in

Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state

The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work we report on the results for the Coulomb heating of H+ 2, B+ 2 and C+ 2 diclusters traveling in Si 〈 110 ⟩ direction covering an energy range from 200 keV/ion to 2400 keV/ion. Those results were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle induced X-ray emission (PIXE) techniques. By comparing the present results to those obtained previously for ions traveling in the narrower Si ⟨ 100 ⟩ channel, several common features are observed for the Coulomb heating values; especially, they follow a linear relationship as a function of the stored potential per ion. However, at variance with previous results, it is shown that the use of a Dirac-Hartree-Fock-Slater (DHFS) potential based on the ion mean charge states in amorphous targets leads to a considerable disagreement between the Coulomb heating values and the expected potential energies stored in the dicluster prior to the Coulomb explosion. In order to investigate this problem, a numerical procedure was developed in order to calculate the mean charge state values for ions traveling under channeling conditions. The use of the resulting charge states led to a linear relationship between the Coulomb heating values and the stored potential energy per ion of the diclusters. Moreover, the Coulomb heating/stored potential energy ratio amounts to about 2/3, which is in full agreement with those results obtained for the Si ⟨ 100 ⟩ direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. Brandt, A. Ratkowski, R.H. Ritchie, Phys. Rev. Lett. 33, 1325 (1974).

    Article  ADS  Google Scholar 

  2. N.R. Arista, Phys. Rev. B 18, 1 (1978).

    Article  ADS  Google Scholar 

  3. N.R. Arista, Nucl. Instrum. Methods Phys. Res. B 164-165, 108 (2000).

    Article  ADS  Google Scholar 

  4. N.R. Arista, V.H. Ponce, J. Phys. C 8, L188 (1975).

    Article  ADS  Google Scholar 

  5. J.C. Eckardt, G. Lantschner, N.R. Arista, R.A. Baragiola, J. Phys. C 11, L851 (1978).

    Article  ADS  Google Scholar 

  6. R. Levi-Setti, K. Lam, T.R. Fox, Nucl. Instrum. Methods Phys. Res. 194, 281 (1982).

    Article  ADS  Google Scholar 

  7. M. Behar, J.F. Dias, P.L. Grande, J.H.R. dos Santos, Phys. Rev. A 64, 022904 (2001).

    Article  ADS  Google Scholar 

  8. J.C. Poizat, J. Remillieux, J. Phys. B 5, L94 (1972).

    Article  ADS  Google Scholar 

  9. J. Golovchenko, E. Laegsgaard, Phys. Rev. A 9, 1215 (1974).

    Article  ADS  Google Scholar 

  10. J.M. Caywood, T.A. Tombrello, T.A. Weaver, Phys. Lett. 37A, 350 (1971).

    Article  ADS  Google Scholar 

  11. T.A. Tombrello, J.M. Caywood, Phys. Rev. B 8, 3065 (1973).

    Article  ADS  Google Scholar 

  12. R.C. Fadanelli, P.L. Grande, M. Behar, J.F. Dias, G. Schiwietz, C.D. Denton, Phys. Rev. B 69, 212104 (2004).

    Article  ADS  Google Scholar 

  13. R.C. Fadanelli, J.F. Dias, M. Behar, Phys. Rev. A 77, 052901 (2008).

    Article  ADS  Google Scholar 

  14. R.C. Fadanelli, M. Behar, J.F. Dias, Phys. Rev. B 81, 132101 (2010).

    Article  ADS  Google Scholar 

  15. J. Lindhard, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 34, 14 (1965).

    Google Scholar 

  16. G. Götz, K. Gärtner, High Energy Ion Beam Analysis of Solids (Akademie-Verlag, Berlin, 1988), and references therein.

  17. J.H.R. dos Santos, P.L. Grande, M. Behar, H. Boudinov, G. Schiwietz, Phys. Rev. B 55, 4332 (1997).

    Article  ADS  Google Scholar 

  18. D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).

    Article  ADS  Google Scholar 

  19. G. de M. Azevedo, P.L. Grande, G. Schiwietz, Nucl. Instrum. Methods Phys. Res. B 164-165, 203 (2000).

    Article  ADS  Google Scholar 

  20. F. Salvat, J.D. Martinez, R. Mayol, J. Parellada, Phys. Rev. A 36, 467 (1987).

    Article  ADS  Google Scholar 

  21. P. Sigmund, Phys. Rev. A 56, 3781 (1997).

    Article  ADS  Google Scholar 

  22. G. Schiwietz, P.L. Grande, Convolution approximation for swift particles, http://www.casp-program.org.

  23. G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001).

    Article  Google Scholar 

  24. W. Jiang, R. Grötzschel, W. Pilz, B. Schmidt, W. Möller, Phys. Rev. B 59, 226 (1999).

    Article  ADS  Google Scholar 

  25. W. Jiang, R. Grötzschel, W. Pilz, B. Schmidt, W. Möller, Phys. Rev. B 60, 714 (1999).

    Article  ADS  Google Scholar 

  26. D. Zajfman, G. Both, E.P. Kanter, Z. Vager, Phys. Rev. A 41, 2482 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moni Behar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadanelli, R., Dias, J. & Behar, M. Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state. Eur. Phys. J. D 68, 1 (2014). https://doi.org/10.1140/epjd/e2013-40528-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40528-0

Keywords

Navigation