Skip to main content
Log in

Analytical potential curves of some hydride molecules using algebraic and energy-consistent method

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Based on the algebraic method (AM) and the energy consistent method (ECM), an AM-ECM protocol for analytical potential energy curves of stable diatomic electronic states is proposed as functions of the internuclear distance. Applications of the AM-ECM to the 6 hydride electronic states of HF-X 1 Σ +, DF-X 1 Σ +, D35Cl-X 1 Σ +, 6LiH-X 1 Σ +, 7LiH-X 1 Σ +, and 7LiD-X 1 Σ + show that the AM-ECM potentials are in excellent agreement with the experimental RKR data and the full AM-RKR data, and that the AM-ECM can obtain reliable analytical potential energies in the molecular asymptotic and dissociation region for these molecular electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Miliordos, A. Mavridis J. Phys. Chem. A 114, 8536 (2010).

    Article  Google Scholar 

  2. K.T. Tang, J.P. Toennies, W. Meyer, J. Chem. Phys. 95, 1144 (1991).

    Article  ADS  Google Scholar 

  3. M.A. Morrison, W.G. Sun, Computational Methods for Electron-Molecule Collisions, edited by W. Huo, F. Gianturco (Plenum, New York, 1995), p. 131.

  4. T. Tietz, Can. J. Phys. 49, 1315 (1971).

    Article  ADS  Google Scholar 

  5. P. Huxley, J.N. Murrell, J. Chem. Soc. Faraday Trans. II 79, 323 (1983).

    Article  Google Scholar 

  6. M.L. Sage, Chem. Phys. 87, 431 (1984).

    Article  ADS  Google Scholar 

  7. W. Hua, J. Phys. B: At. Mol. Opt. Phys. 23, 2521 (1990).

    Article  ADS  Google Scholar 

  8. F.M. Rafi, Phys. Lett. A 205, 383 (1995).

    Article  ADS  Google Scholar 

  9. D.O.N. Gardner, L.V. Szentpaly, J. Phys. Chem. A 103, 9313 (1999).

    Article  Google Scholar 

  10. S. Noorizadeh, G.R. Pourshams, J. Mol. Struct. 678, 207 (2004).

    Article  Google Scholar 

  11. R. Xie, J. Gong, Phys. Rev. Lett. 95, 263202 (2005).

    Article  ADS  Google Scholar 

  12. P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010).

    Article  ADS  Google Scholar 

  13. A.J.C. Varandas, Adv. Chem. Phys. 74, 255 (1988).

    Google Scholar 

  14. A.J.C. Varandas, Mol. Phys. 53, 1303 (1984).

    Article  ADS  Google Scholar 

  15. A.J.C. Varandas, J. Dias da Silva, J. Chem. Soc. Faraday Trans. 288, 941 (1992).

    Article  Google Scholar 

  16. A.J.C. Varandas, S.P.J. Rodrigues, V.M.O. Batista, Chem. Phys. Lett. 424, 425 (2006).

    Article  ADS  Google Scholar 

  17. S. Kristýan, G.I. Csonka, Chem. Phys. Lett. 307, 469 (1999).

    Article  ADS  Google Scholar 

  18. J. San Fabián, J. Casanueva, E. San Fabián, J. Guilleme, J. Chem. Phys. 122, 4143 (2000).

    Article  ADS  Google Scholar 

  19. V. Spirko, J. Mol. Spectrosc. 235, 268 (2006).

    Article  ADS  Google Scholar 

  20. M.W. Schmidt, J. Ivanic, K. Ruedenberg, J. Phys. Chem. A 114, 8687 (2010).

    Article  Google Scholar 

  21. G.J. Hoffman, Chem. Phys. 361, 68 (2009).

    Article  ADS  Google Scholar 

  22. H.J. Kulik, N. Marzari, J. Chem. Phys. 133, 114103 (2010).

    Article  ADS  Google Scholar 

  23. W.G. Sun, Mol. Phys. 92, 105 (1997).

    Article  ADS  Google Scholar 

  24. W.G. Sun, H. Feng, J. Phys. B: At. Mol. Opt. Phys. 32, 5109 (1999).

    Article  ADS  Google Scholar 

  25. A.T. Royappa, V. Suri, J.R. McDonough, J. Mol. Struct. 787, 209 (2006).

    Article  ADS  Google Scholar 

  26. W.G. Sun, S.L. Hou, H. Feng, W.Y. Ren, J. Mol. Spectrosc. 215, 93 (2002).

    Article  ADS  Google Scholar 

  27. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979).

  28. J.A. Coxon, P.G. Hajigeorgiou, J. Mol. Spectrosc. 142, 254 (1990).

    Article  ADS  Google Scholar 

  29. W.C. Stwalley, W.T. Zemke, J. Phys. Chem. Ref. Data 22, 87 (1993).

    Article  ADS  Google Scholar 

  30. L. Li, A.M. Lyyra, W.T. Luh, W.C. Stwalley, J. Chem. Phys. 93, 8452 (1990).

    Article  ADS  Google Scholar 

  31. D. Shi, J. Zhang, J. Sun, H. Liu, Y. Liu, Z. Zhu, Int. J. Quantum Chem. 110, 1481 (2010).

    Google Scholar 

  32. I. Cooper, A.S. Dickinson, J. Chem. Phys. 131, 204303 (2009).

    Article  ADS  Google Scholar 

  33. W.G. Sun, Q.C. Fan, W.Y. Ren, Sci. China Ser. G. Phys. Mech. Astron. 50, 611 (2007).

    Article  ADS  MATH  Google Scholar 

  34. Q.C. Fan, W.G. Sun, H. Feng, Spectrochim. Acta Part A 74, 911 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qunchao Fan or Weiguo Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Q., Sun, W., Feng, H. et al. Analytical potential curves of some hydride molecules using algebraic and energy-consistent method. Eur. Phys. J. D 68, 5 (2014). https://doi.org/10.1140/epjd/e2013-40437-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40437-2

Keywords

Navigation