Skip to main content
Log in

Minimal size of endohedral singly vanadium-doped aluminum cluster: a density-functional study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Energetically low-lying equilibrium geometric structures and electronic structures of Al n V (n = 2–24) clusters were investigated using density-functional theory within generalized gradient approximation. From the most stable geometric structures, a structural transition with the doped vanadium atom residing from the surface to the interior of the cluster was found from n = 16 to 19. This geometric transition fits well with the early experimental result based on the argon physisorption [S.M. Lang, P. Claes, S. Neukermans, E. Janssens, J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. Due to the geometric transition, average Al-V bond lengths and coordination numbers of V atoms for the most stable structures of Al n V clusters undergo an increases from n = 16 to 19. The relative stabilities, electronic structures, and other relevant properties were also discussed. It was found that doping of a V atom in the Al n cluster strengthen the stability of the framework and the Al4,6,8,10,13,16,19,21V clusters were more stable than their neighbors. Moreover, the Mulliken populations showed that the intra-atomic hybridization exists in both V and Al atoms and charge transfer from Al atoms to V atom were also found in these complexes, which could reflect the Al-V hybridizations. Electronic structure analysis based on the partial density of states reveals stronger Al-V hybridization for the endohedrally doped structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    Article  ADS  Google Scholar 

  2. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 141, 365 (1993)

    Google Scholar 

  3. W. Huang, A.P. Sergeeva, H.J. Zhai, B.B. Averkiev, L.S. Wang, A.I. Boldyrev, Nat. Chem. 2, 202 (2010)

    Article  Google Scholar 

  4. D. Chrobak, N. Tymiak, A. Beaber, O. Ugurlu, W.W. Gerberich, R. Nowak, Nat. Nanotechnol. 6, 480 (2011)

    Article  ADS  Google Scholar 

  5. J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  6. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  7. H.Q. Wang, X.Y. Kuang, H.F. Li, Phys. Chem. Chem. Phys. 12, 5156 (2010)

    Article  Google Scholar 

  8. J.G. Du, X.Y. Sun, D.Q. Meng, P.C. Zhang, G. Jiang, J. Chem. Phys. 131, 044313 (2009)

    Article  ADS  Google Scholar 

  9. C.C. Wang, R.N. Zhao, J.G. Han, J. Chem. Phys. 124, 194301 (2006)

    Article  ADS  Google Scholar 

  10. S. Yin, R. Moro, X. Xu, W.A. de Heer, Phys. Rev. Lett. 98, 113401 (2007)

    Article  ADS  Google Scholar 

  11. P.A. Guirado-López, F. Aguilera-Granja, J. Phys. Chem. C 112, 6729 (2008)

    Article  Google Scholar 

  12. F.C. Chuang, C.Z. Wang, K.H. Ho, Phys. Rev. B 73, 125431 (2006)

    Article  ADS  Google Scholar 

  13. X.G. Gong, V. Kumar, Phys. Rev. B 50, 17701 (1994)

    Article  ADS  Google Scholar 

  14. X. Li, L.S. Wang, Phys. Rev. B 65, 153404 (2002)

    Article  ADS  Google Scholar 

  15. B.D. Leskiw, A.W. Castleman Jr., Chem. Phys. Lett. 316, 31 (2000)

    Article  ADS  Google Scholar 

  16. B.K. Rao, P.J. Jena, Chem. Phys. 111, 1890 (1999)

    Article  ADS  Google Scholar 

  17. J. Sun, W.C. Lu, Z.S. Li, C.Z. Wang, K.M. Ho, J. Chem. Phys. 129, 014707 (2008)

    Article  ADS  Google Scholar 

  18. D.M. Cox, D.J. Trevor, R.L. Whetten, E.A. Rohlfing, A. Kaldor, J. Chem. Phys. 84, 4651 (1986)

    Article  ADS  Google Scholar 

  19. E.G. Noya, J.P.K. Doye, F. Calvo, Phys. Rev. B 73, 125407 (2006)

    Article  ADS  Google Scholar 

  20. N.E. Schultz, G. Staszewska, P. Staszewski, D.G. Truhlar, J. Phys. Chem. B 108, 4850 (2004)

    Article  Google Scholar 

  21. P. Gerhardt, M. Niemietz, Y.D. Kim, G. Gantefor, Chem. Phys. Lett. 382, 454 (2003)

    Article  ADS  Google Scholar 

  22. X.G. Gong, D.Y. Sun, X.Q. Wang, Phys. Rev. B 62, 15413 (2000)

    Article  ADS  Google Scholar 

  23. J. Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, L.S. Wang, Phys. Rev. B 62, 13216 (2000)

    Article  ADS  Google Scholar 

  24. T. Andersson, C. Zhang, M. Tchaplyguine, S. Svensson, N. Mårtensson, O. Björneholm, J. Chem. Phys. 136, 204504 (2012)

    Article  ADS  Google Scholar 

  25. S.N. Khanna, P. Jena, Phys. Rev. B 51, 13705 (1995)

    Article  ADS  Google Scholar 

  26. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  27. X. Li, H.B. Wu, X.B. Wang, L.S. Wang, Phys. Rev. Lett. 81, 1909 (1998)

    Article  ADS  Google Scholar 

  28. X.S. Chen, J.J. Zhao, G.H. Wang, Z. Phys. D 35, 149 (1995)

    Article  ADS  Google Scholar 

  29. M.S. Bailey, N.T. Wilson, C. Roberts, R.L. Johnston, Eur. Phys. J. D 25, 41 (2003)

    Article  ADS  Google Scholar 

  30. V. Shah, D.G. Kanhere, C. Majumder, G.P. Das, J. Phys.: Condens. Matter 9, 2165 (1997)

    ADS  Google Scholar 

  31. V. Kumar, Phys. Rev. B 57, 8827 (1998)

    Article  ADS  Google Scholar 

  32. Q.L. Lu, A.F. Jalbout, Q.Q. Luo, J.G. Wan, G.H. Wang, J. Chem. Phys. 128, 224707 (2008)

    Article  ADS  Google Scholar 

  33. S.N. Khanna, C. Ashman, B.K. Rao, P. Jena, J. Chem. Phys. 114, 9792 (2001)

    Article  ADS  Google Scholar 

  34. W.J. Zheng, O.C. Thomas, T.P. Lippa, S.J. Xu, K.H. Bowen Jr., J. Chem. Phys. 124, 144304 (2006)

    Article  ADS  Google Scholar 

  35. O.C. Thomas, W.J. Zheng, T.P. Lippa, S.J. Xu, S.A. Lyapustina, K.H. Bowen Jr., J. Chem. Phys. 114, 9895 (2001)

    Article  ADS  Google Scholar 

  36. L.I. Kurkina, O.V. Farberovich, V.A. Gorbunov, J. Phys.: Condens. Matter 5, 6029 (1993)

    ADS  Google Scholar 

  37. L.I. Kurkina, V.A. Gorbunov, O.V. Farberovich, Phys. Stat. Sol. B 176, 183 (1993)

    Article  ADS  Google Scholar 

  38. S.M. Lang, P. Claes, S. Neukermans, E. Janssens, J. Am. Soc. Mass Spectrom. 22, 1508 (2011)

    Article  Google Scholar 

  39. Y.W. Hua, Y.L. Liu, G. Jiang, J.G. Du, J. Chen, J. Phys. Chem. A 117, 2590 (2013)

    Article  Google Scholar 

  40. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995)

    Article  ADS  Google Scholar 

  41. M.F. Cai, T.P. Dzugan, V.E. Bondybey, Chem. Phys. Lett. 155, 430 (1989)

    Article  ADS  Google Scholar 

  42. R.O. Jones, Phys. Rev. Lett. 67, 224 (1991)

    Article  ADS  Google Scholar 

  43. S.H. Yang, D.A. Drabold, J.B. Adams, A. Sachdev, Phys. Rev. B 47, 1567 (1993)

    Article  ADS  Google Scholar 

  44. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  45. B. Delley, J. Chem. Phys. 94, 7245 (1991)

    Article  ADS  Google Scholar 

  46. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  47. A.D. Becke, J. Chem. Phys. 88, 2547 (1988)

    Article  ADS  Google Scholar 

  48. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 786 (1988)

    ADS  Google Scholar 

  49. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  ADS  MATH  Google Scholar 

  50. J.M. Behm, D.J. Brugh, M.D. Morse, J. Chem. Phys. 101, 6487 (1994)

    Article  ADS  Google Scholar 

  51. A.I. Boldyrev, J. Simons, Periodic Table of Diatomic Molecules. Part A. Diatomics of Main Group Elements (Wiley, London, 1997)

  52. J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002)

    Article  Google Scholar 

  53. Y.L. Liu, Y.W. Hua, M. Jiang, G. Jiang, J. Chen, J. Chem. Phys. 136, 084703 (2012)

    Article  ADS  Google Scholar 

  54. E. Janssens, P. Gruene, G. Meijer, L. Wöste, P. Lievens, A. Fielicke, Phys. Rev. Lett. 99, 063401 (2007)

    Article  ADS  Google Scholar 

  55. D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)

    Article  ADS  Google Scholar 

  56. Y.R. Zhao, X.Y. Kuang, B.B. Zheng, Y.F. Li, S.J. Wang, J. Phys. Chem. A 115, 569 (2011)

    Article  Google Scholar 

  57. S.J. Wang, X.Y. Kuang, C. Lu, Y.F. Li, Y.R. Zhao, Phys. Chem. Chem. Phys. 13, 10119 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Y., Liu, Y., Jiang, G. et al. Minimal size of endohedral singly vanadium-doped aluminum cluster: a density-functional study. Eur. Phys. J. D 67, 267 (2013). https://doi.org/10.1140/epjd/e2013-40306-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40306-0

Keywords

Navigation