Skip to main content
Log in

Protecting qutrit-qutrit entanglement by weak measurement and reversal

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Entangled states in high dimensional systems are of great interest due to the extended possibilities they provide in quantum information processing. Recently, Sun et al. [Phys. Rev. A 82, 052323 (2010)] and Kim et al. [Nat. Phys. 8, 117 (2012)] pointed out that weak measurement and quantum weak measurement reversal can actively combat decoherence. We generalize their studies from qubits to qutrits under amplitude damping decoherence. We find that the qutrit-qutrit entanglement can be partially retrieved for certain initial states when only weak measurement reversals are performed. However, we can completely defeat amplitude damping decoherence for any initial states by the combination of prior weak measurements and post optimal weak measurement reversals. The experimental feasibility of our schemes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  2. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  3. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.P. Almeida et al., Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  5. Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  6. A.N. Korotkov, Phys. Rev. B 60, 5737 (1999)

    Article  ADS  Google Scholar 

  7. A.N. Korotkov, A.N. Jordan, Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  8. Q.Q. Sun, M. Al-Amri, M.S. Zubairy, Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  9. A.N. Korotkov, K. Keane, Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  10. X. Xiao, M. Feng, Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  11. Q.Q. Sun, M. Al-Amri, L. Davidovich, M.S. Zubairy, Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  12. Y.S. Kim, J.C. Lee, O. Kwon, Y.H. Kim, Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  13. Z.X. Man, Y.J. Xia, N.B. An, Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  14. Y.L. Li, X. Xiao, submitted to Quantum Information Process

  15. N. Katz et al., Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  16. Y.S. Kim, Y.W. Cho, Y.S. Ra, Y.H. Kim, Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  17. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 313 (2001)

    Article  ADS  Google Scholar 

  18. G. Molina-Terriza, A. Vaziri, R. Ursin, A. Zeilinger, Phys. Rev. Lett. 94, 040501 (2005)

    Article  ADS  Google Scholar 

  19. R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, M. Kozuma, Phys. Rev. Lett. 103, 110503 (2009)

    Article  ADS  Google Scholar 

  20. B.P. Lanyon et al., Phys. Rev. Lett. 100, 060504 (2008)

    Article  ADS  Google Scholar 

  21. S.P. Walborn, D.S. Lemelle, M.P. Almeida, P.H. Souto Ribeiro, Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  22. G.M. Nikolopoulos, G. Alber, Phys. Rev. A 72, 032320 (2005)

    Article  ADS  Google Scholar 

  23. A.N. Korotkov, Nat. Phys. 8, 107 (2012)

    Article  Google Scholar 

  24. F.T. Hioe, J.H. Eberly, Phys. Rev. Lett. 47, 838 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Cheçińska, K. Wódkiewicz, Phys. Rev. A 76, 052306 (2007)

    Article  ADS  Google Scholar 

  26. Y.W. Cheong, S.W. Lee, Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  27. C.H. Bennet, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  29. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P. Horodecki, Phys. Lett. A 232, 333 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Lloyd, M.S. Shahriar, J.H. Shapiro, P.R. Hemmer, Phys. Rev. Lett. 87, 167903 (2001)

    Article  ADS  Google Scholar 

  32. R. Das et al., Int. J. Quantum Inform. 1, 387 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Li, YL. Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013). https://doi.org/10.1140/epjd/e2013-40036-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40036-3

Keywords

Navigation