Skip to main content
Log in

Thermal quantum and classical correlations in a two-qutrit system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The investigation of quantum and classical correlations has mostly concentrated on two-qubit states because the minimization in the classical correlation is quite complicated for high-dimensional states. Thermal quantum and classical correlations are studied for a two-qutrit system with various coupling constants, external magnetic fields, and temperatures as well, where the quantum correlation is described in terms of the quantum discord that has been extensively used in recent literature. The entanglement negativity is calculated for comparison. It is shown that the discord is nonzero whereas the negativity is zero in some ranges of system parameters and temperature. Moreover, the discord is more robust than the entanglement against temperature and magnetic field. However, at lower temperatures all three correlations behave similarly. Those are useful for understanding quantum correlations in high-dimensional mixed states and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  3. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. F. Galve, G.L. Giorgi, R. Zambrini, Phys. Rev. A 83, 012102 (2011)

    Article  ADS  Google Scholar 

  5. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  6. B.P. Lanyon et al., Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  7. A. Datta, S. Gharibian, Phys. Rev. A 79, 042325 (2009)

    Article  ADS  Google Scholar 

  8. W.H. Zurek, Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  9. M. Horodecki et al., Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  10. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  11. M. Piani et al., Phys. Rev. Lett. 102, 250503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Girolami, G. Adesso, Phys. Rev. A 84, 052110 (2011)

    Article  ADS  Google Scholar 

  13. Y. Li, B. Luo, H. Guo, Phys. Rev. A 84, 012316 (2011)

    Article  ADS  Google Scholar 

  14. A. Al-Qasimi, D.F.V. James, Phys. Rev. A 83, 032101 (2011)

    Article  ADS  Google Scholar 

  15. K. Berrada, F.F. Fanchini, S. Abdel-Khalek, Phys. Rev. A 85, 052315 (2012)

    Article  ADS  Google Scholar 

  16. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  17. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  18. J. Maziero et al., Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  19. Y.C. Li, H.Q. Lin, Phys. Rev. A 83, 052323 (2011)

    Article  ADS  Google Scholar 

  20. L. Amico et al., Phys. Rev. Lett. 108, 240503 (2012)

    Article  ADS  Google Scholar 

  21. T. Werlang, G. Rigolin, Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  22. A.S.M. Hassan, B. Lari, P.S. Joag, J. Phys. A 43, 485302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  23. J.L. Guo, Y.J. Mi, J. Zhang, H.S. Song, J. Phys. B 44, 065504 (2011)

    Article  ADS  Google Scholar 

  24. E.I. Kuznetsova, A.I. Zenchuk, Phys. Lett. A 376, 1029 (2012)

    Article  ADS  MATH  Google Scholar 

  25. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  28. T.C. Wei et al., Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  29. S.K. Yip, Phys. Rev. Lett. 90, 250402 (2003)

    Article  ADS  Google Scholar 

  30. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  31. G.F. Zhang, J.Q. Liang, G.E. Zhang, Q.W. Yan, Eur. Phys. J. D 32, 409 (2005)

    Article  ADS  Google Scholar 

  32. T. Tilma, M. Byrd, E.C.G. Sudarshan, J. Phys. A 35, 10445 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  34. S. Hamieh, R. Kobes, H. Zaraket, Phys. Rev. A 70, 052325 (2004)

    Article  ADS  Google Scholar 

  35. M. Okrasa, Z. Walczak, Europhys. Lett. 98, 40003 (2012)

    Article  ADS  Google Scholar 

  36. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The art of scientific computing (Cambridge University Press, Cambridge, 1986)

  37. C. Sabín, G. García-Alcaine, Eur. Phys. J. D 48, 435 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. C.S. Yu, K.H. Ma, H.S. Song, Eur. Phys. J. D 56, 431 (2010)

    Article  ADS  Google Scholar 

  39. X.W. Hou, M.F. Wan, Z.Q. Ma, Phys. Rev. A 79, 022308 (2009)

    Article  ADS  Google Scholar 

  40. X.W. Hou, M.F. Wan, Z.Q. Ma, J. Phys. A 43, 205301 (2010)

    Article  ADS  Google Scholar 

  41. X.W. Hou, M.F. Wan, Z.Q. Ma, Eur. Phys. J. D 62, 279 (2011)

    Article  ADS  Google Scholar 

  42. X.W. Hou, M.F. Wan, Z.Q. Ma, Eur. Phys. J. D 66, 152 (2012)

    Article  ADS  Google Scholar 

  43. E. Chitambar, Phys. Rev. A 86, 032110 (2012)

    Article  ADS  Google Scholar 

  44. K. Modi et al., Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  45. B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  46. G.F. Zhang et al., Eur. Phys. J. D 66, 34 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Wen Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, XW., Lei, XF. & Chen, B. Thermal quantum and classical correlations in a two-qutrit system. Eur. Phys. J. D 67, 106 (2013). https://doi.org/10.1140/epjd/e2013-30730-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30730-5

Keywords

Navigation