Skip to main content
Log in

Modelling of discharge in a high-flow microwave plasma source (MPS)

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Self-consistent numerical calculations are performed on a microwave sustained discharge in argon at atmospheric pressure. Very high gas flow rates (typically 120 L/min) are considered. Furthermore, in a discharge tube with a diameter of 26 mm i.d., which is at least twice as large as those currently utilized at 2.45 GHz, according to our calculations, the device nonetheless ensures good impedance matching, as required for an efficient gas processing. Output values of the calculations in the 1 to 6 kW power range are the radial and axial distributions of gas and electron temperature as well as electron density. The specific features that are observed are the fact that: (i) the discharge is not filamentary although the large diameter of the discharge tube favours such a phenomenon when using such a high field frequency and lower gas flow rates; (ii) the occurrence of a minimum value (a hole) of gas temperature and electron density on the tube axis, with the swirling of the gas flow being suggested to improve the uniformity of the discharge parameters, hence the efficiency of a given process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Ferreira, B. Gordiets, E. Tatarova, J. Henriques, F.M. Dias, Chem. Phys. 398, 248 (2012)

    Article  ADS  Google Scholar 

  2. V. Straňák, M. Tichý, P. Špatenka, J. Koller, V. Kıřha, V. Scholtz, Czech. J. Phys. 56, B843 (2006)

    Article  Google Scholar 

  3. T. Shimizu, B. Steffes, R. Pompl, F. Jamitzky, W. Bunk, K. Ramrath, M. Georgi, W. Stolz, H.-U. Schmidt, T. Urayama, S. Fujii, G.E. Morfill, Plasma Process. Polym. 5, 577 (2008)

    Article  Google Scholar 

  4. H. Uhm, Y. Hong, D. Shin, Plasma Sources Sci. Technol. 15, S26 (2006)

    Article  ADS  Google Scholar 

  5. J. Kopecki, D. Kiesler, M. Leins, A. Schulz, M. Walker, M. Kaiser, H. Muegge, U. Stroth, Surf. Coat. Technol. 205, S342 (2011)

    Article  Google Scholar 

  6. Y. Kabouzi, M. Moisan, J. Rostaing, C. Trassy, D. Keroack, Z. Zakrzewski, J. Phys. D 93, 9483 (2003)

    Google Scholar 

  7. Y.C. Hong, H.S. Uhm, Phys. Plasmas 10, 3410 (2003)

    Article  ADS  Google Scholar 

  8. J. Henriques, N. Bundaleska, E. Tatarova, F.M. Dias, C.M. Ferreira, Int. J. Hydrogen Energy 36, 345 (2011)

    Article  Google Scholar 

  9. M. Jasiński, M. Dors, H. Nowakowska, G.V. Nichipor, J. Mizeraczyk, J. Phys. D 44, 194002 (2011)

    Article  ADS  Google Scholar 

  10. Y. Kabouzi, M. Moisan, IEEE Trans. Plasma Sci. 33, 292 (2005)

    Article  ADS  Google Scholar 

  11. J. Muñoz, J. Bravo, M. Calzada, Open Spectrosc. J. 3, 52 (2009)

    Article  ADS  Google Scholar 

  12. M. Moisan, G. Sauve, Z. Zakrzewski, J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994)

    Article  ADS  Google Scholar 

  13. M. Moisan, Z. Zakrzewski, Plasma Sources Sci. Technol. 4, 379 (1995)

    Article  ADS  Google Scholar 

  14. H. Nowakowska, M. Jasiński, P. Dębicki, J. Mizeraczyk, IEEE Trans. Plasma Sci. 39, 1935 (2011)

    Article  ADS  Google Scholar 

  15. H. Nowakowska, M. Jasiński, J. Mizeraczyk, IEEE Trans. Plasma Sci. 39, 2906 (2011)

    Article  ADS  Google Scholar 

  16. H. Nowakowska, M. Jasiński, J. Mizeraczyk, Eur. J. Phys. 54, 511 (2009)

    ADS  Google Scholar 

  17. H. Nowakowska, Z. Zakrzewski, M. Moisan, M. Lubański, J. Phys. D 31, 1422 (1998)

    Article  ADS  Google Scholar 

  18. E. Castaños-Martínez, Y. Kabouzi, K. Makasheva, M. Moisan, Phys. Rev. E 70, 066405 (2004)

    Article  ADS  Google Scholar 

  19. Y. Kabouzi, D. Graves, E. Castaños-Martínez, M. Moisan, Phys. Rev. E 75, 016402 (2007)

    Article  ADS  Google Scholar 

  20. V. Liau, M. Fang, J. Yan, A. Al-Shamma’a, J. Phys. D 36, 2774 (2003)

    Article  ADS  Google Scholar 

  21. G. Hagelaar, L. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)

    Article  ADS  Google Scholar 

  22. M. Mitchner, C.H. Kruger, Partially Ionized Gases (Wiley, New York, 1973)

  23. M. Lieberman, A. Lichtenberg, Principles of plasma discharges and material processing (Wiley, New York, 1994)

  24. G. Kroesen, D. Schram, C. Timmermans, M. De Haas, IEEE Trans. Plasma. Sci. 18, 85 (1990)

    Article  Google Scholar 

  25. R.S. Devoto, Phys. Fluids 10, 354 (1967)

    Article  ADS  Google Scholar 

  26. G.M. Janssen, J. van Dijk, D.A. Benoy, M.A. Tas, K.T.A.L. Burm, W.J. Goedheer, J.A.M. van der Mullen, D.C. Schram, Plasma Sources Sci. Technol. 8, 1 (1999)

    Article  ADS  Google Scholar 

  27. D. Benoy, J. van der Mullen, D. Schram, J. Quant. Spectrosc. Radiat. Transfer 46, 195 (1991)

    Article  ADS  Google Scholar 

  28. W. Chen, J. Heberlein, E. Pfender, Plasma Chem. Plasma Proc. 16, 635 (1996)

    Article  Google Scholar 

  29. www.comsol.com

  30. T.S. Petrova, E. Benova, G. Petrov, I. Zhelyazkov, Phys. Rev. E 60, 875 (1999)

    Article  ADS  Google Scholar 

  31. H. Schlüter, A. Shivarova, Phys. Rep. 443, 121 (2007)

    Article  ADS  Google Scholar 

  32. J.M. Palomares, E. Iordanova, E.M. van Veldhuizen, L. Baede, A. Gamero, A. Solab, J.J.A.M. van der Mullen, Spectrochim. Acta B 65, 225 (2010)

    Article  ADS  Google Scholar 

  33. M. Nantel-Valiquette, Y. Kabouzi, E. Castaños-Martínez, K. Makasheva, M. Moisan, J.C. Rostaing, Pure Appl. Chem. 78, 1173 (2006)

    Article  Google Scholar 

  34. B. Hrycak, D. Czylkowski, M. Jasiński, J. Mizeraczyk, Przeglad Elektrotechniczny (Electrical Review) 88, 310 (2012)

    Google Scholar 

  35. B. Hrycak, M. Jasiński, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Nowakowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowakowska, H., Jasiński, M. & Mizeraczyk, J. Modelling of discharge in a high-flow microwave plasma source (MPS). Eur. Phys. J. D 67, 133 (2013). https://doi.org/10.1140/epjd/e2013-30514-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30514-y

Keywords

Navigation