Skip to main content

Advertisement

Log in

Structural and electronic properties of AuIr nanoalloys

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The lowest-energy structures of binary (AuIr) n , (AuIr3) s , and (Au3Ir) s clusters, with n = 2−20, and s = 5, modeled by the many-body Gupta potential, were obtained by using a genetic-symbiotic algorithm. These structures were further relaxed within the density functional theory to obtain the most stable structures for each composition. Segregation is observed in all the AuIr clusters, where the Ir atoms occupy the cluster core and the Au atoms are situated on the cluster surface. On the other hand, there is experimental evidence that the (AuIr) n nanoalloys could have an enhanced catalytic activity for CO oxidation. In order to study this phenomenon, we also performed first-principles density functional calculations of the CO and O2 adsorption on these bimetallic nanoclusters, considering three different compositions and a fixed cluster size of 20 atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Jellinek, E.B. Krissinel, Theory of Atomic and Molecular Clusters, edited by J. Jellinek (Springer, Berlin, 1999)

  2. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  3. J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983)

  4. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 197, 113 (2001)

    Article  Google Scholar 

  5. T.V. Choudhary, D.W. Goodman, Top. Catal. 21, 25 (2002)

    Article  Google Scholar 

  6. M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa, O. Okada, J. Appl. Catal. B 41, 43 (2003)

    Article  Google Scholar 

  7. T. Akita, M. Okumura, K. Tanaka, S. Tsubota, M. Haruta, J. Electron Microsc. 52, 119 (2003)

    Article  Google Scholar 

  8. Z.-P. Liu, S.J. Jenkins, D.A. King, Phys. Rev. Lett. 93, 156102 (2004)

    Article  ADS  Google Scholar 

  9. A. Gómez-Cortés, G. Díaz, R. Zanella, H. Rodríguez, P. Santiago, J.M. Saniger, J. Phys. Chem. C 113, 9719 (2009)

    Article  Google Scholar 

  10. X. Bokhimi, R. Zanella, C. Angeles-Chavez, J. Phys. Chem. C 114, 14101 (2010)

    Article  Google Scholar 

  11. F. Cleri, V. Rosato, Phys Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  12. K. Michaelian, Chem. Phys. Lett. 293, 202 (1998)

    Article  ADS  Google Scholar 

  13. K. Michaelian, N. Rendón, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. I.L. Garzón, M.R. Beltrán, G. González, I. Gutíerrez-González, K. Michaelian, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, Eur. Phys. J. D 24, 105 (2003)

    Article  ADS  Google Scholar 

  16. E.M. Fernández, L.C. Balbás, L.A. Pérez, K. Michaelian, I.L. Garzón, Int. J. Mod. Phys. B 19, 2339 (2005)

    Article  ADS  Google Scholar 

  17. L.O. Paz-Borbón, A. Gupta, R.L. Johnston, J. Mater. Chem. 18, 4154 (2008)

    Article  Google Scholar 

  18. R. Ferrando, A. Fortunelli, R.L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008)

    Article  Google Scholar 

  19. A. Radillo-Díaz, Y. Coronado, L.A. Pérez, I.L. Garzón, Eur. Phys. J. D 52, 127 (2009)

    Article  ADS  Google Scholar 

  20. J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  21. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  22. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  23. J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)

    Article  ADS  Google Scholar 

  24. J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)

    Article  ADS  Google Scholar 

  25. M.D. Morse, Chem. Rev. 86, 1049 (1986)

    Article  Google Scholar 

  26. J. Li, X. Li, H.-J. Zhai, L.-S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Díaz, L.M., Pérez, L.A. Structural and electronic properties of AuIr nanoalloys. Eur. Phys. J. D 67, 15 (2013). https://doi.org/10.1140/epjd/e2012-30537-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30537-x

Keywords

Navigation