Skip to main content
Log in

Algebraic analysis of electromagnetic chirality-induced negative refractive index in a four-level atomic system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper presents a algebraic analysis of electromagnetic chirality-induced negative refractive index in a four-level atomic medium. According to analyze mathematically its argument of the complex refractive index for one circular polarization, it found that the negative refractive index without simultaneously negative permittivity and permeability can be obtained when the argument is in the second quadrant of the cartesian coordinate system, and that the probe field coupling to two equal transition frequencies in the atomic level doesn’t require. This undoubtedly reduced stringent conditions to negative refractive index by quantum optics. As an application, our scheme may possibly give a novel approach to obtain negative refractive index by electromagnetic chirality-inducing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  2. T.J. Yen et al., Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  3. V.G. Veselago, E.E. Narimanov, Nat. Mater. 5, 759 (2006)

    Article  ADS  Google Scholar 

  4. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  6. K. Aydin, I. Bulu, E. Ozbay, Appl. Phys. Lett. 90, 254102 (2007)

    Article  ADS  Google Scholar 

  7. L. Chen, S. He, L. Shen, Phys. Rev. Lett. 92, 107404 (2004)

    Article  ADS  Google Scholar 

  8. J.B. Pendry, Nature 423, 22 (2003)

    Article  ADS  Google Scholar 

  9. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature 423, 604 (2003)

    Article  ADS  Google Scholar 

  10. G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, IEEE Trans. Microwave Theory Tech. 50, 2702 (2002)

    Article  ADS  Google Scholar 

  11. J.B. Pendry, Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  12. V. Yannopapas, J. Phys.: Condens. Matter 18, 6883 (2006)

    Article  ADS  Google Scholar 

  13. S.C. Zhao, JETP Lett. 94, 347 (2011)

    Article  ADS  Google Scholar 

  14. Q. Thommen, P. Mandel, Phys. Rev. Lett. 96, 053601 (2006)

    Article  ADS  Google Scholar 

  15. S.C. Zhao, Z.D. Liu, J. Zheng, G. Li, N. Liu, Optik 123, 1063 (2012)

    Article  Google Scholar 

  16. M.Ö. Oktel, Ö.E. Mütecaplǧu, Phys. Rev. A 70, 053806 (2004)

    Article  ADS  Google Scholar 

  17. S.C. Zhao, Sci. China-Phys. Mech. Astron. 55, 213 (2012)

    Article  ADS  Google Scholar 

  18. J.Q. Shen, Phys. Lett. A 357, 54 (2006)

    Article  ADS  Google Scholar 

  19. C. Monzon, D.W. Forester, Phys. Rev. Lett. 95, 123904 (2005)

    Article  ADS  Google Scholar 

  20. J. Käastel, M. Fleischhauer, S.F. Yelin, R.L. Walsworth, Phys. Rev. Lett. 99, 073602 (2007)

    Article  ADS  Google Scholar 

  21. J. Käastel, M. Fleischhauer, R.L. Walsworth, Phys. Rev. A 79, 063818 (2009)

    Article  ADS  Google Scholar 

  22. T.G. Mackay, A. Lakhtakia, SPIE Rev. 1, 018003 (2010)

    Article  Google Scholar 

  23. F.L. Li, A.P. Fang, M. Wang, J. Phys. B 42, 199505 (2009)

    Google Scholar 

  24. H.J. Zhang, Y.P. Niu, H. Sun, J. Luo, S.Q. Gong, J. Phys. B 41, 125503 (2008)

    Article  ADS  Google Scholar 

  25. D.M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, New Jersey, 1975), Chap. 11

  26. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999), p. 160

  27. A.A. Kaminskii, V. Mironov, S.A. Kornienko, S.N. Bagaev, G. Boulon, A. Brenier, B. DiBartolo, Phys. Stat. Sol. A 151, 231 (1995)

    Article  ADS  Google Scholar 

  28. D.K. Sardar, C.H. Coeckelenbergh, R.M. Yow, J.B. Gruber, T.H. Allik, J. Appl. Phys. 98, 033535 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Cai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SC., Wu, QX. & Gong, AL. Algebraic analysis of electromagnetic chirality-induced negative refractive index in a four-level atomic system. Eur. Phys. J. D 67, 28 (2013). https://doi.org/10.1140/epjd/e2012-30512-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30512-7

Keywords

Navigation