Skip to main content
Log in

Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electrical and spectroscopic results of comprehensive investigations of atmospheric pressure glow discharges in helium, argon, nitrogen and air in a large current range are presented. Our attention in these investigations is mainly focused on the characterization of positive column plasmas at discharge gap of 10 mm. It was shown that helium, nitrogen and air positive columns transform from diffuse to constricted mode when discharge current increases. In argon discharge, it is constricted in the whole range of investigated currents. Reduced electric field, gas temperature, average electron energy and electron concentration were determined. The positive column plasmas of all the atmospheric pressure glow discharges studied are non-equilibrium and weakly ionized. Plasma non-equilibrium degree in atomic gases of helium and argon is essentially higher than in molecular nitrogen and air. For all gases, plasma non-equilibrium degree in a positive column decreases with discharge current increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Roth, J. Rahel, X. Dai, D.M. Sherman, J. Phys. D 38, 555 (2005)

    Article  ADS  Google Scholar 

  2. E. Temmerman, Yu. Akishev, N. Trushkin, C. Leys, J. Verschuren, J. Phys. D 38, 505 (2005)

    Article  ADS  Google Scholar 

  3. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  4. D. Dudek, N. Bibinov, J. Engemann, P. Awakowicz, J. Phys. D 40, 7367 (2007)

    Article  ADS  Google Scholar 

  5. F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Process. Polym. 5, 322 (2008)

    Article  Google Scholar 

  6. J. Tynan, V.J. Law, P. Ward, A.M. Hynes, J. Cullen, G. Byrne, S. Daniels, D.P. Dowling, Plasma Source Sci. Technol. 19, 015015 (2010)

    Article  ADS  Google Scholar 

  7. B.R. Locke, K.-Y. Shih, Plasma Source Sci. Technol. 20, 034006 (2011)

    Article  ADS  Google Scholar 

  8. R.J. Barker, K.H. Becker, U. Kogelschatz, K.H. Schoenbach, Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics, Bristol, 2005)

  9. A. Fridman, Plasma Chemistry (Cambridge University Press, New York, 2008)

  10. K.H. Becker, A.H. Kersten, J. Hopwood, J.L. Lopez, Eur. Phys. J. D 60, 437 (2010)

    Article  ADS  Google Scholar 

  11. V.I. Arkhipenko, A.A. Kirillov, Y.A. Safronau, L.V. Simonchik, Eur. Phys. J. D 60, 455 (2010)

    Article  ADS  Google Scholar 

  12. V.I. Arkhipenko, A.A. Kirillov, Ya.A. Safronau, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 17, 045017 (2008)

    Article  ADS  Google Scholar 

  13. V.I. Arkhipenko, A.A. Kirillov, Ya.A. Safronau, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 18, 045013 (2009)

    Article  ADS  Google Scholar 

  14. Y. Akishev, M. Grushin, V. Karalnik, I. Kochetov, A. Napartovich, N. Trushkin, J. Phys.: Conf. Ser. 257, 012014 (2010)

    Article  ADS  Google Scholar 

  15. Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, J. Adv. Oxid. Technol. 7, 133 (2004)

    Google Scholar 

  16. D. Staack, B. Farouk, A.F. Gutsol, A.A. Fridman, Plasma Source Sci. Technol. 14, 700 (2005)

    Article  ADS  Google Scholar 

  17. V.N. Kolesnikov, Trudy FIAN: Fizicheskaia Optika 30, 66 (1964)

    Google Scholar 

  18. G.V. Naidis, Plasma Source Sci. Technol. 16, 297 (2007)

    Article  ADS  Google Scholar 

  19. V.I. Arkhipenko, A.A. Kirillov, L.V. Simonchik, S.M. Zgirouski, Plasma Source Sci. Technol. 14, 757 (2005)

    Article  ADS  Google Scholar 

  20. V.I. Arkhipenko, S.M. Zgirouski, A.A. Kirillov, L.V. Simonchik, in Spectroscopy of Plasma and Natural Objects (in Russian), edited by V.I. Arkhipenko, V.S. Burakov, A.F. Cherniavskiy (Belaruskaja Navuka, Minsk, 2007)

  21. V.P. Stepaniuk, T. Ioppolo, M.V. Ötügen, V.A. Sheverev, J. Appl. Phys. 102, 123302 (2007)

    Article  ADS  Google Scholar 

  22. L.I. Kiselevskii, S.L. Mazurenko, A.N. Makarevich, D.A. Solovianchik, in Proceedings of the 7thESCAMPIG, Bari, 1984, p. 160

  23. V.I. Arkhipenko, A.A. Kirillov, L.V. Simonchik, S.M. Zgirouski, in Proceedings of the 4th International Conference Plasma Physics and Plasma Technology, Minsk, 2003, Vol. 1, p. 175

  24. P. Mezei, T. Cserfalvi, M. Janossy, J. Phys. D 34, 1914 (2001)

    Article  ADS  Google Scholar 

  25. W.A. Gambling, H. Edels, Br. J. Appl. Phys. 5, 36 (1954)

    Article  ADS  Google Scholar 

  26. C.G. Suits, Phys. Rev. 55, 561 (1939)

    Article  ADS  Google Scholar 

  27. L.G.H. Huxley, R.W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974)

  28. H.R. Griem, Spectral Lines Broadening (Academic Press, New York, London, 1974)

  29. G.J.M. Hagelaar, BOLSIG + : electron Boltzmann equation solver, http://www.bolsig.laplace.univ-tlse.fr (accessed in May 2010)

  30. G.J.M. Hagelaar, L.C. Pitchford, Plasma Source Sci. Technol. 14, 722 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. Simonchik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipenko, V., Kirillov, A., Safronau, Y. et al. Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases. Eur. Phys. J. D 66, 252 (2012). https://doi.org/10.1140/epjd/e2012-30359-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30359-x

Keywords

Navigation