Skip to main content
Log in

Static and dynamic structure of monomers, dimers and trimers of HgCl2 from density-functional calculations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report relativistic density-functional calculations for the equilibrium structures and the vibrational frequencies of the (HgCl2) n molecules with n = 1 to 3, as part of a broad exploration of the potential energy landscape of these compounds that will later be used to develop their pseudoclassical interatomic force laws. The calculations are carried out both in a physical plane-waves-expansion approach and in a quantum-chemical localized-Gaussians-expansion approach, with mutually consistent results within their expected accuracy, and are supplemented by analysis of the bond type and of the valence-electrons localization. The relativistic results are also compared with those of analogous non-relativistic calculations. For the monomer and the dimer we find close agreement with the earlier results of Kaupp and von Schnering and of Donald, Hargittai and Hoffmann, and in particular for the mechanical-equilibrium shape of the dimer we confirm their prediction of a major symmetry-breaking distortion driven by relativistic effects. We find an analogous relativistic structural distortion for the trimer, leading to alternative mechanical-equilibrium shapes that can all be viewed as resulting from the direct addition of a monomer to a dimer. The basic ground-state structures of the trimer clearly are precursors to the unique crystal structure of HgCl2 as a lamellar crystal formed from stripes of Cl-Hg-Cl molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hulliger, Structural Chemistry of Layer-type Phases (Reidel Publishing Company, Dordrecht, 1976)

  2. W. Andreoni, Helv. Phys. Acta 58, (1985)

  3. R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience, New York, 1963), Vol. 1

  4. W. Scholten, J.D.F. Bijvoet, Z. Krist. 103, 405 (1941)

    Google Scholar 

  5. P.J. Hay, W.R. Wadt, L.R. Kahn, F.W. Bobrowicz, J. Chem. Phys. 69, 984 (1978)

    Article  ADS  Google Scholar 

  6. M. Kaupp, H.G. von Schnering, Inorg. Chem. 33, 2555 (1994)

    Article  Google Scholar 

  7. M. Hargittai, Chem. Rev. 100, 2233 (2000)

    Article  Google Scholar 

  8. K.J. Donald, M. Hargittai, R. Hoffmann, Chem. Eur. J. 15, 158 (2009)

    Article  Google Scholar 

  9. A.R. Ubbelohde, The Molten State of Matter: Melting and Crystal Structure (Wiley, Chichester, 1978)

  10. G.J. Janz, J. Phys. Chem. Ref. Data 17, 1 (1988)

    Article  Google Scholar 

  11. Z. Akdeniz, M.P. Tosi, Proc. Roy. Soc. Lond. A 437, 85 (1992)

    Article  ADS  Google Scholar 

  12. R. Ruberto, G. Pastore, M.P. Tosi, Phys. Lett. A 373, 1083 (2009)

    Article  ADS  Google Scholar 

  13. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  14. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  16. M.J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford CT, 2010)

  17. D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chem. Acta 77, 123 (1990)

    Article  Google Scholar 

  18. J.M.L. Martin, A. Sundermann, Theor. Chem. Acta 114, 3408 (2001)

    Google Scholar 

  19. F. Biegler-König, J. Comp. Chem. 21, 1040 (2000)

    Article  Google Scholar 

  20. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  Google Scholar 

  21. D. Feller, J. Comp. Chem. 17, 1571 (1996)

    Google Scholar 

  22. K.L. Schuchardt, B.T. Didier, T. Elsethagen, L.S. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, J. Chem. Inf. Model 47, 1045 (2007)

    Article  Google Scholar 

  23. T. Lu, Multiwfn: A multifunctional wavefunction analyzer, version 2.01, http://Multiwfn.codeplec.com (2011)

  24. U. Häussermann, Arbeitsbericht, http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html (1988)

  25. R.F.W. Bader, Atoms in Molecules – A Quantum Theory (Oxford University Press, USA, 1994)

  26. P.L. Popelier, Atoms in Molecules – An Introduction (Prentice Hall, USA, 2000)

  27. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)

    Article  ADS  Google Scholar 

  28. P. Macchi, D.M. Proserpio, A. Sironi, J. Am. Chem. Soc. 120, 13429 (1998)

    Article  Google Scholar 

  29. G. Kacar, C. Atilgan, A.S. Özen, J. Phys. Chem. 114, 370 (2010)

    Google Scholar 

  30. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

    Article  ADS  Google Scholar 

  31. A. Savin, J. Mol. Struct. Theochem 727, 127 (2005)

    Article  ADS  Google Scholar 

  32. Chemical Reactivity Theory: A Density Functional View (CRC Press, FL, 2009)

  33. C. Gourlaouen, H. Gerard, J.P. Piquemal, O. Parisel, Chem. Eur. J. 14, 2730 (2008)

    Article  Google Scholar 

  34. See e.g. D. Frenkel, Statistical Mechanics of Liquid Crystals, in Liquids, Crystallisation and Glass Transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (Elsevier, USA, 1991), p. 689

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pastore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruberto, R., Pastore, G., Özen, A.S. et al. Static and dynamic structure of monomers, dimers and trimers of HgCl2 from density-functional calculations. Eur. Phys. J. D 66, 229 (2012). https://doi.org/10.1140/epjd/e2012-30235-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30235-9

Keywords

Navigation