Skip to main content
Log in

Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20–100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (|E|max) when excited at 514 nm, the Au nanocubes displayed higher |E|max values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in |E|max as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.M. Mayer, J.H. Hafner, Chem. Rev. 111, 3828 (2011)

    Article  Google Scholar 

  2. R. Wilson, Chem. Soc. Rev. 37, 2028 (2008)

    Article  Google Scholar 

  3. C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Chem. Soc. Rev. 40, 44 (2011)

    Article  Google Scholar 

  4. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006)

    Article  Google Scholar 

  5. N.P.W. Pieczonka, R.F. Aroca, Chem. Soc. Rev. 37, 946 (2008)

    Article  Google Scholar 

  6. P.L. Stiles, J.A. Dieringer, N.L. Shah, R.P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008)

    Article  Google Scholar 

  7. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

  8. P. Mulvaney, Langmuir 12, 788 (1996)

    Article  Google Scholar 

  9. G.V. Hartland, Chem. Rev. 111, 3858 (2011)

    Article  Google Scholar 

  10. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, S.C. Baxter, Acc. Chem. Res. 41, 1721 (2008)

    Article  Google Scholar 

  11. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  12. E.C. Le Ru, P.G. Etchegoin, Principles of Surface-enhanced Raman Spectroscopy and Related Plasmonic Effects (Elselvier, Amsterdam, 2009)

  13. X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y.N. Xia, Annu. Rev. Phys. Chem. 60, 167 (2009)

    Article  ADS  Google Scholar 

  14. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  15. B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110, 15666 (2006)

    Article  Google Scholar 

  16. T.K. Sau, C.J. Murphy, J. Am. Chem. Soc. 126, 8648 (2004)

    Article  Google Scholar 

  17. M. Grzelczaka, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Chem. Soc. Rev. 37, 1783 (2008)

    Article  Google Scholar 

  18. B. Wiley, Y. Sun, Y. Xia, Acc. Chem. Res. 40, 1067 (2007)

    Article  Google Scholar 

  19. Y. Sun, Y. Xia, Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  20. M. Rycenga, M.H. Kim, P.H.C. Camargo, C. Cobley, Z.-Y. Li, Y. Xia, J. Phys. Chem. A 113, 3932 (2009)

    Article  Google Scholar 

  21. M. Rycenga, P.H.C. Camargo, W. Li, C.H. Moran, Y. Xia, J. Phys. Chem. Lett. 1, 696 (2010)

    Article  Google Scholar 

  22. J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz, Acc. Chem. Res. 41, 1710 (2008)

    Article  Google Scholar 

  23. J.M. McMahon, Y. Wang, L.J. Sherry, R.P.V. Duyne, L.D. Marks, S.K. Gray, G.C. Schatz, J. Phys. Chem. C 113, 2731 (2009)

    Article  Google Scholar 

  24. E. Ringe, J.M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G.C. Schatz, L.D. Marks, R.P. Van Duyne, J. Phys. Chem. C 114, 12511 (2010)

    Article  Google Scholar 

  25. W.-H. Yang, G.C. Schatz, R.P. Van Duyne, J. Chem. Phys. 103, 869 (1995)

    Article  ADS  Google Scholar 

  26. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)

    Article  ADS  Google Scholar 

  27. F. Zhou, Z.-Y. Li, Y. Liu, Y. Xia, J. Phys. Chem. C 112, 20233 (2008)

    Article  Google Scholar 

  28. L.F. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5, 2034 (2005)

    Article  ADS  Google Scholar 

  29. B.T. Draine, P.J. Flatau, User guide to the discrete dipole approximation code DDSCAT 7.1, http://arXiv.org/abs/1002.1505v1 (2010)

  30. M.J. Collinge, B.T. Draine, J. Opt. Soc. Am. A 21, 2023 (2004)

    Article  ADS  Google Scholar 

  31. B.T. Draine, J. Goodman, Astrophys. J. 405, 685 (1993)

    Article  ADS  Google Scholar 

  32. J.J. Goodman, B.T. Draine, P.J. Flatau, Opt. Lett. 16, 1198 (1991)

    Article  ADS  Google Scholar 

  33. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  34. J.M. McLellan, Z.-Y. Li, A.R. Siekkinen, Y. Xia, Nano Lett. 7, 1013 (2007)

    Article  ADS  Google Scholar 

  35. T. Klar, M. Perner, S. Grosse, G. van Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)

    Article  ADS  Google Scholar 

  36. Y.H. Lee, H. Chen, Q.-H. Xu, J. Wang, J. Phys. Chem. C 115, 7997 (2011)

    Article  Google Scholar 

  37. P.H.C. Camargo, M. Rycenga, L. Au, Y. Xia, Angew. Chem. Int. Ed. 48, 2180 (2009)

    Article  Google Scholar 

  38. F. Zhou, Y. Liu, Z.-Y. Li, Chin. Phys. B 20, 037303 (2011)

    Article  ADS  Google Scholar 

  39. M. Quinten, Appl. Phys. B 73, 245 (2001)

    Article  ADS  Google Scholar 

  40. B.J. Messinger, K.U. von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. C. Camargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermoso, W., Alves, T.V., Ornellas, F.R. et al. Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. Eur. Phys. J. D 66, 135 (2012). https://doi.org/10.1140/epjd/e2012-30144-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30144-y

Keywords

Navigation