Skip to main content
Log in

Preserving quantum correlations in two superconducting qubits by applying time-dependent magnetic fields

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We propose a scheme to preserve quantum correlations in a dissipative superconducting qubit system, which consists of two noninteracting dissipative superconducting flux qubits, each driven by a time-dependent magnetic field. We investigate the influence of the initial states and the time-dependent magnetic fields on the dynamics of quantum correlations between the two flux qubits. It is shown that the quantum correlations between the two qubits can be improved in the Markovian regime and well preserved in the non-Markovian regime by applying the time-dependent magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  2. C.H. Bennett, S. Author, T. Author, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, C.A. Mor, T. Fuchs, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Phys. Rev. A 59, 1070 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  5. Y. Yeo, Phys. Rev. A 78, 022334 (2008)

    Article  ADS  Google Scholar 

  6. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  7. D.A. Meyer, Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  8. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  9. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  10. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  11. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  12. C.W. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 2000)

  13. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2008)

  14. J.S. Xu, X.Y. Xu, C.F. Li, C.J. Zhang, X.B. Zou, G.C. Guo, Nat. Commun. 1, 1 (2010)

    Google Scholar 

  15. J.Q. You, F. Nori, Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  16. J. Clarke, K. Wilhelm, Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  17. Y.X. Liu, L.F. Wei, J.S. Tsai, F. Nori, Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  18. Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  19. Y.A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D.V. Averin, J.S. Tsai, Nature 421, 823 (2003)

    Article  ADS  Google Scholar 

  20. J.B. Majer, F.G. Paauw, A.C.J. ter Haar, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 94, 090501 (2005)

    Article  ADS  Google Scholar 

  21. A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner, H.-G. Meyer, A. Yu. Smirnov, M.H.S. Amin, V. den Brink, A. Maassen, A.M. Zagoskin, Phys. Rev. Lett. 93, 037003 (2004)

    Article  ADS  Google Scholar 

  22. H. Xu, Frederick W. Strauch, S.K. Dutta, P.R. Johnson, R.C. Ramos, A.J. Berkley, H. Paik, J.R. Anderson, A.J. Dragt, C.J. Lobb, F.C. Wellstood, Phys. Rev. Lett. 94, 027003 (2005)

    Article  ADS  Google Scholar 

  23. R. McDermott, R.W. Simmonds, M. Steffen, K.B. Cooper, K. Cicak, K.K. Osborn, S. Pappas, D.P. Oh, J.M. Martinis, Science 307, 1299 (2005)

    Article  ADS  Google Scholar 

  24. Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Phys. Rev. B 76, 144518 (2007)

    Article  ADS  Google Scholar 

  25. T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  26. A.N. Omelyanchouk, S.N. Shevchenko, Ya.S. Greenberg, O. Astafiev, E. Il’ichev, Low Temp. Phys. 36, 893 (2010)

    Article  ADS  Google Scholar 

  27. P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  28. Y.Q. Zhang, J.B. Xu, Eur. Phys. J. D 64, 549 (2011)

    Article  ADS  Google Scholar 

  29. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  30. X.M. Lu, X. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  31. C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  32. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  33. L. Roa, J.C. Retamal, M. Alid-Vaccarezza, Phys. Rev. Lett. 107, 080401 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.Q. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., He, Q., Mu, Q. et al. Preserving quantum correlations in two superconducting qubits by applying time-dependent magnetic fields. Eur. Phys. J. D 66, 210 (2012). https://doi.org/10.1140/epjd/e2012-30105-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30105-6

Keywords

Navigation