Skip to main content
Log in

Structural stability and electronic properties of small gold clusters induced by 3p electron atoms

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The geometries and electronic properties of gold clusters doped with atoms containing 3p valence electrons (MAu n ; M = Al, Si, P, S, Cl; n = 2−8) have been systematically investigated using density functional theory (DFT) at the PBE/LANL2DZ level. A number of low-energy isomers are identified for neutral MAu n clusters. It is found that doping with different 3p impurity atoms can drastically influence the geometrical structures, relative stabilities, electronic properties, and growth-pattern behaviors of gold clusters, which is very different from the case of 3d transition-metal impurity doped Au n clusters. Partially filled 3p electron impurities can stabilize Au clusters. In particular, SiAu4 cluster with T d symmetry have been found to have highly stable geometries and electronic structures with binding energies of 2.43 eV per atom (0.96 eV higher than pristine Au5 clusters), large HOMO-LUMO gaps (2.17 eV), and vertical ionization potentials of 8.68 eV. Using scalar relativistic molecular dynamics at T = 300 K, we show that the T d symmetry structure of SiAu4 is stable. The frontier molecular orbitals (HOMO and LUMO) and the partial densities of states (PDOS) show that strong hybridization occurs between the atomic orbitals of Si and Au atoms, resulting in strong Si-Au bonding. In addition, the vertical ionization potential, the vertical electron affinity, and charge transfers of MAu n clusters have also been analyzed. Our results are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Haruta, Catal. Today 36, 153 (1997)

    Article  Google Scholar 

  2. P. Schwerdtfeger, Angew. Chem. Int. Ed. 42, 1892 (2003)

    Article  Google Scholar 

  3. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  4. P. Pyykkö, Nat. Nanotechnol. 2, 273 (2007)

    Article  ADS  Google Scholar 

  5. K.P. Huber, G. Herzberg, Constants of Diatomic Molec-ules (Van Nostrand Reinhold, New York, 1979)

  6. B. Simard, P.A. Hackett, J. Mol. Spectrosc. 142, 310 (1990)

    Article  ADS  Google Scholar 

  7. J. Ho, K. Ervin, W. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Article  ADS  Google Scholar 

  8. K. Taylor, C. Pettitte-Hall, O. Cheshnovsky, R. Smalley, J. Chem. Phys. 96, 3319 (1992)

    Article  ADS  Google Scholar 

  9. C. Jackschath, I. Rabin, W. Schulze, Ber. Bunsenges. Phys. Chem. 96, 1200 (1992)

    Article  Google Scholar 

  10. R.N. Barnett, C.I. Cleveland, H. Häkkinen, W.D. Luedtke, C. Yamouleas, U. Landsman, Eur. Phys. J. D 9, 95 (1999)

    Article  ADS  Google Scholar 

  11. H. Häkkinen, B. Yoon, U. Landman, X. Li, H.J. Zhai, L.S. Wang, J. Phys. Chem. A 107, 6168 (2003)

    Article  Google Scholar 

  12. Y. Gao, W. Huang, J. Woodford, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 131, 9484 (2009)

    Article  Google Scholar 

  13. K.A. Gingerich, G.D. Blue, J. Chem. Phys. 59, 185 (1973)

    Article  ADS  Google Scholar 

  14. T.G. Schaaff, W.G. Cullen, P.N. First, I. Vezmar, R.L. Whetten, W.G. Cullen, P.N. First, C. Gutieérez-Wing, J. Ascensio, M.J. Jose-Yacamaá, J. Phys. Chem. 101, 7885 (1997)

    Article  Google Scholar 

  15. K. Koga, H. Takeo, T. Ikeda, K.I. Ohshima, Phys. Rev. B 57, 4053 (1998)

    Article  ADS  Google Scholar 

  16. C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Phys. Rev. Lett. 79, 1873 (1997)

    Article  ADS  Google Scholar 

  17. B. Palpant, B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J.L. Vialle, M. Broyer, Phys. Rev. B 57, 1963 (1998)

    Article  ADS  Google Scholar 

  18. P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)

    Article  ADS  Google Scholar 

  19. D.W. Liao, K. Balasubramanian, J. Chem. Phys. 97, 2548 (1992)

    Article  ADS  Google Scholar 

  20. O.D. Häberlen, H. Schmidbauer, N. Rösch, J. Am. Chem. Soc. 116, 8241 (1994)

    Article  Google Scholar 

  21. K. Michaelian, N. Rendon, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  22. E.M. Fernández, J.M. Soler, L.C. Balbás, Phys. Rev. B 73, 235433 (2006)

    Article  ADS  Google Scholar 

  23. B.H. Hess, U. Kaldor, J. Phys. Chem. 112, 1809 (2000)

    Article  Google Scholar 

  24. H. Grönbeck, W. Andreoni, Chem. Phys. 262, 1 (2000)

    Article  Google Scholar 

  25. M.A. Omary, M.A. Rawashdeh-Omary, C.C. Chusuei, J.P. Fackler, P.S. Bagus, J. Chem. Phys. 114, 10695 (2001)

    Article  ADS  Google Scholar 

  26. F. Furche, R. Ahlrichs, P. Weiss, C. Jacob, S. Gib, T. Bierweiler, M. Kappes, J. Chem. Phys. 117, 6982 (2002)

    Article  ADS  Google Scholar 

  27. Z. Zhang, A. Berg, H. Levanon, R. Fessenden, W.D. Meisel, J. Am. Chem. Soc. 125, 7959 (2003)

    Article  Google Scholar 

  28. J. Zheng, J.T. Petty, R.M. Dickson, J. Am. Chem. Soc. 125, 7780 (2003)

    Article  Google Scholar 

  29. J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

  30. M.S. Chen, D.W. Goodman, Science 306, 252 (2004)

    Article  ADS  Google Scholar 

  31. J. Wang, G. Wan, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  32. J. Zhao, J. Yang, J.G. Hou, Phys. Rev. B 67, 085404 (2003)

    Article  ADS  Google Scholar 

  33. M. Niemietz, P. Gerhardt, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. 380, 99 (2003)

    Article  ADS  Google Scholar 

  34. K. Sugawara, F. Sobott, A.B. Vakhtin, J. Chem. Phys. 118, 7808 (2003)

    Article  ADS  Google Scholar 

  35. Y.D. Kim, M. Fischer, G. Ganteför, Chem. Phys. Lett. 377, 170 (2003)

    Article  ADS  Google Scholar 

  36. R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2005)

    Article  Google Scholar 

  37. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  38. S. Bulusu, X. Li, L.S. Wang, X.C. Zeng, Proc. Natl. Acad. Sci. USA 103, 8326 (2006)

    Article  ADS  Google Scholar 

  39. A. Lechtken, D. Schooss, J.R. Stairs, M.N. Blom, F. Furche, N. Morgner, O. Kostko, B. Von Issendorf, M.M. Kappes, Angew. Chem. Int. Ed. 46, 2944 (2007)

    Article  Google Scholar 

  40. H. Häkkinen, U. Landman, Phys. Rev. B 62, R2287 (2000)

    Article  ADS  Google Scholar 

  41. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M. Kappes, J. Chem. Phys. 116, 4094 (2002)

    Article  ADS  Google Scholar 

  42. J.C. Idrobo, W. Walkosz, S.F. Yip, S. Öğüt, J.L. Wang, J. Jellinek, Phys. Rev. B 76, 205422 (2007)

    Article  ADS  Google Scholar 

  43. V. Bonačić-Koutecký, J. Burda, R. Mitric, M. Ge, J. Chem. Phys. 117, 3120 (2002)

    Article  ADS  Google Scholar 

  44. L. Ferrighi, B. Hammer, G.K.H. Madsen, J. Am. Chem. Soc. 131, 10605 (2009)

    Article  Google Scholar 

  45. X.B. Li, H.Y. Wang, X.D. Yang, Z.H. Zhu, Y.J. Tang, J. Chem. Phys. 126, 084505 (2007)

    Article  ADS  Google Scholar 

  46. H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)

    Article  ADS  Google Scholar 

  47. W. Huang, L.S. Wang, Phys. Rev. Lett. 102, 153401 (2009)

    Article  ADS  Google Scholar 

  48. B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)

    Article  ADS  Google Scholar 

  49. H.S. De, S. Krishnamurty, D. Mishra, S. Pal, J. Phys. Chem. C 115, 17278 (2011)

    Article  Google Scholar 

  50. M.X. Chen, X.H. Yan, J. Chem. Phys. 128, 174305 (2008)

    Article  ADS  Google Scholar 

  51. W. Fa, J.M. Dong, J. Chem. Phys. 128, 144307 (2008)

    Article  ADS  Google Scholar 

  52. H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Am. Chem. Soc. 125, 2862 (2003)

    Article  Google Scholar 

  53. E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, New J. Phys. 5, 46 (2003)

    Article  ADS  Google Scholar 

  54. M. Zhang, S. Chen, Q.M. Deng, L.M. He, L.N. Zhao, Y.H. Luo, Eur. Phys. J. D 58, 117 (2010)

    Article  ADS  Google Scholar 

  55. Q. Sun, X.G. Gong, Q.Q. Zheng, D.Y. Sun, G.H. Wang, Phys. Rev. B 54, 10896 (1996)

    Article  ADS  Google Scholar 

  56. Q. Sun, Q. Wang, J.Z. Yu, Z.Q. Li, J.T. Wang, Y. Kawazoe, J. Phys. I 7, 1233 (1997)

    Article  Google Scholar 

  57. J. Van De Walle, R.J. Tarento, P. Joyes, Surf. Rev. Lett. 6, 307 (1999)

    Article  Google Scholar 

  58. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L.T. Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)

    Article  ADS  Google Scholar 

  59. M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)

    Article  ADS  Google Scholar 

  60. K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 358, 224 (2002)

    Article  ADS  Google Scholar 

  61. X. Li, B. Kiran, J. Li, H.J. Zhai, L.S. Wang, Angew. Chem. 114, 4980 (2002)

    Article  Google Scholar 

  62. H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)

    Article  Google Scholar 

  63. L.M. Wang, R. Pal, W. Huang, X. Li, X.C. Zeng, L.S. Wang, J. Chem. Phys. 132, 114306 (2010)

    Article  ADS  Google Scholar 

  64. J. David, D. Guerra, C.Z. Hadad, A. Restrepo, J. Phys. Chem. A 114, 10726 (2010)

    Article  Google Scholar 

  65. T.K. Ghanty, A. Banerjee, A. Chakrabarti, J. Phys. Chem. C 114, 20 (2010)

    Article  Google Scholar 

  66. W.Q. Tian, M. Ge, F. Gu, T. Yamada, Y. Aoki, J. Phys. Chem. A 110, 6285 (2006)

    Article  Google Scholar 

  67. W.Q. Tian, M. Ge, B.R. Sahu, D. Wang, T. Yamada, S. Mashiko, J. Phys. Chem. A 108, 3806 (2004)

    Article  Google Scholar 

  68. W.Q. Tian, M. Ge, F. Gu, Y. Aoki, J. Phys. Chem. A 109, 9860 (2005)

    Article  Google Scholar 

  69. A. Yang, W. Fa, J.M. Dong, J. Phys. Chem. A 114, 4301 (2010)

    Google Scholar 

  70. P. Pyykkö, N. Runeberg, Angew. Chem. Int. Ed. 41, 2174 (2002)

    Article  Google Scholar 

  71. X. Li, B. Kiran, J. Li, H.J. Zhai, L.S. Wang, Angew. Chem. Int. Ed. 41, 4786 (2002)

    Article  Google Scholar 

  72. S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)

    Article  ADS  Google Scholar 

  73. H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Chem. Phys. 119, 7115 (2003)

    Article  ADS  Google Scholar 

  74. E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004)

    Article  ADS  Google Scholar 

  75. M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Rev. B 71, 155412 (2005)

    Article  ADS  Google Scholar 

  76. X. Li, B. Kiran, L.F. Cui, L.S. Wang, Phys. Rev. Lett. 95, 253401 (2005)

    Article  ADS  Google Scholar 

  77. M. Zhang, L.M. He, L.X. Zhao, X.J. Feng, Y.H. Luo, J. Phys. Chem. C 113, 6491 (2009)

    Article  Google Scholar 

  78. T. Höltzl, P. Lievens, T. Veszprémi, M.T. Nguyen, J. Phys. Chem. C 113, 21016 (2009)

    Article  Google Scholar 

  79. P.V. Nhat, M.T. Nguyen, Phys. Chem. Chem. Phys. 13, 16254 (2011)

    Article  Google Scholar 

  80. V. Kumar, Phys. Rev. B 79, 085423 (2009)

    Article  ADS  Google Scholar 

  81. P. Pyykkö, Y. Zhao, Chem. Phys. Lett. 177, 103 (1991)

    Article  ADS  Google Scholar 

  82. R. Pal, S. Bulusu, X.C. Zeng, J. Comput. Meth. Sci. Eng. 7, 185 (2007)

    Google Scholar 

  83. Y.L. Cao, C. van der Linde, R.F. Hoeckendorf, M.K. Beyer, J. Chem. Phys. 132, 224307 (2010)

    Article  ADS  Google Scholar 

  84. L.M. Wang, S. Bulusu, W. Huang, R. Pal, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 129, 15136 (2007)

    Article  Google Scholar 

  85. M. Abe, T. Nakajima, K. Hirao, J. Chem. Phys. 117, 7960 (2002)

    Article  ADS  Google Scholar 

  86. M. Walter, H. Häkkinen, Phys. Chem. Chem. Phys. 8, 5407 (2006)

    Article  Google Scholar 

  87. Q. Sun, Q. Wang, G. Chen, P. Jena, J. Chem. Phys. 127, 214706 (2007)

    Article  ADS  Google Scholar 

  88. B. Kiran, X. Li, H.J. Zhai, L.F. Cui, L.S. Wang, Angew. Chem. Int. Ed. 43, 2125 (2004)

    Article  Google Scholar 

  89. B. Kiran, X. Li, H.J. Zhai, L.S. Wang, J. Chem. Phys. 125, 133204 (2006)

    Article  ADS  Google Scholar 

  90. X. Li, B. Kiran, L.S. Wang, J. Phys. Chem. A 109, 4366 (2005)

    Article  Google Scholar 

  91. C. Majumder, Phys. Rev. B 75, 235409 (2007)

    Article  ADS  Google Scholar 

  92. C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)

    Article  ADS  Google Scholar 

  93. R. Pal, L.M. Wang, W. Huang, L.S. Wang, X.C. Zeng, J. Am. Chem. Soc. 131, 3396 (2009)

    Article  Google Scholar 

  94. W.J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 81, 6026 (1984)

    Article  ADS  Google Scholar 

  95. P.J. Hay W.R. Wadt, J. Chem. Phys. 82, 299 (1985)

    Article  ADS  Google Scholar 

  96. M.J. Frisch, G.M. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wang, C. Gonzales, J.A. Pople, Gaussian 03 (revision C.02) (Gaussian Inc., Pittsburgh, PA, 2003)

  97. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  98. J.P.K. Doye, D.J. Wales, J. Phys. Chem. A 101, 5111 (1997)

    Article  Google Scholar 

  99. D.J. Wales, H.A. Scheraga, Science 285, 1368 (1999)

    Article  Google Scholar 

  100. P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmake, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)

    Article  ADS  Google Scholar 

  101. P. Schwerdtfeger, M. Dolg, Phys. Rev. A 43, 1644 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhang or You-Hua Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Yang, SB., Feng, XJ. et al. Structural stability and electronic properties of small gold clusters induced by 3p electron atoms. Eur. Phys. J. D 67, 11 (2013). https://doi.org/10.1140/epjd/e2012-30080-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30080-x

Keywords

Navigation