Skip to main content
Log in

Structure and thermal stability of AgCu chiral nanoparticles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The structure and thermal stability of AgCu core-shell chiral nanoparticles is investigated by means of global optimization searches and molecular-dynamics simulations within an atomistic model. The most energetically stable structures are searched for depending on the number N Ag of Ag atoms in the outer shell. Both icosahedral and C5 symmetry structures are considered. The thermal stability of the structures is studied for magic sizes and compositions by analyzing the melting transition. It is found that chiral shells are the most favourable in a wide range of N Ag and that the structures present a notable thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Langlois, D. Alloyeau, Y.L. Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Faraday Discuss. 138, 375 (2008)

    Article  ADS  Google Scholar 

  2. C.T. Langlois, T. Oikawa, P. Bayle-Guillemaud, C. Ricolleau, J. Nanopart. Res. 10, 997 (2008)

    Article  Google Scholar 

  3. M. Gaudry et al., Phys. Rev. B 67, 155409 (2003)

    Article  ADS  Google Scholar 

  4. F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. B 66, 155420 (2002)

    Article  ADS  Google Scholar 

  5. F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. Lett. 90, 135504 (2003)

    Article  ADS  Google Scholar 

  6. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004)

    Article  ADS  Google Scholar 

  7. F. Baletto, C. Mottet, A. Rapallo, G. Rossi, R. Ferrando, Surf. Sci. 566, 192 (2004)

    Article  ADS  Google Scholar 

  8. M.A. Ortigoza, T.S. Rahman, Phys. Rev. B 77, 195404 (2008)

    Article  ADS  Google Scholar 

  9. P.J. Hsu, J.S. Luo, S.K. Lai, J.F. Wax, J.L. Bretonnet, J. Chem. Phys. 129, 194302 (2008)

    Article  ADS  Google Scholar 

  10. F. Calvo, E. Cottancin, M. Broyer, Phys. Rev. B 77, 121406 (2008)

    Article  ADS  Google Scholar 

  11. Z. Kuntová, G. Rossi, R. Ferrando, Phys. Rev. B 77, 205431 (2008)

    Article  ADS  Google Scholar 

  12. F. Lequien, J. Creuze, F. Berthier, B. Legrand, Faraday Discuss. 138, 105 (2008)

    Article  ADS  Google Scholar 

  13. F. Lequien, J. Creuze, F. Berthier, I. Braems, B. Legrand, Phys. Rev. B 78, 075414 (2008)

    Article  ADS  Google Scholar 

  14. L. Delfour, J. Creuze, B. Legrand, Phys. Rev. Lett. 103, 205701 (2009)

    Article  ADS  Google Scholar 

  15. I. Parsina, F. Baletto, J. Phys. Chem. C 114, 1504 (2010)

    Article  Google Scholar 

  16. D.A. Kilimis, D.G. Papageorgiou, Eur. Phys. J. D 58, 189 (2010)

    Article  ADS  Google Scholar 

  17. D. Bochicchio, R. Ferrando, Nano Lett. 10, 4211 (2010)

    Article  ADS  Google Scholar 

  18. S. Nunez, R.L. Johnston, J. Phys. Chem. C 114, 13255 (2010)

    Article  Google Scholar 

  19. S.K. Lai, Y.T. Lin, P.J. Hsu, S.A. Cheong, Comput. Phys. Commun. 182, 1013 (2011)

    Article  ADS  MATH  Google Scholar 

  20. H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011)

    Article  ADS  Google Scholar 

  21. M. Molayem, V.G. Grigoryan, M. Springborg, J. Phys. Chem. C 115, 7179 (2011)

    Article  Google Scholar 

  22. M. Molayem, V.G. Grigoryan, M. Springborg, J. Phys. Chem. C 115, 22148 (2011)

    Article  Google Scholar 

  23. S.J. Kim, E.A. Stach, C.A. Handwerker, Appl. Phys. Lett. 96, 144101 (2010)

    Article  ADS  Google Scholar 

  24. F.H.B. Lima, J.F.R. de Castro, E.A. Ticianelli, J. Power Sources 161, 806 (2006)

    Article  Google Scholar 

  25. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  26. C. Noguez, I.L. Garzon, Chem. Soc. Rev. 38, 757 (2009)

    Article  Google Scholar 

  27. T.G. Schaaff, R.L. Whetten, J. Phys. Chem. B 104, 2630 (2000)

    Article  Google Scholar 

  28. X. López-Lozano, L.A. Pérez, I.L. Garzón, Phys. Rev. Lett. 97, 233401 (2006)

    Article  ADS  Google Scholar 

  29. V. Kitaev, J. Mater. Chem. 18, 4745 (2008)

    Article  Google Scholar 

  30. A.L. Mackay, Acta Crystallogr. 15, 916 (1962)

    Article  Google Scholar 

  31. I.A. Harris, L.S. Kidwell, J.A. Northby, Phys. Rev. Lett. 53, 2390 (1984)

    Article  ADS  Google Scholar 

  32. F. Cyrot-Lackmann, F. Ducastelle, Phys. Rev. B 4, 2406 (1971)

    Article  ADS  Google Scholar 

  33. R.P. Gupta, Phys. Rev. B 23, 6265 (1985)

    Article  ADS  Google Scholar 

  34. V. Rosato, M. Guillopè, B. Legrand, Philos. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

  35. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  36. D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 511 (1997)

    Google Scholar 

  37. G. Rossi, R. Ferrando, J. Phys.: Condens. Matter 9, 084208 (2009)

    ADS  Google Scholar 

  38. G. Rossi, R. Ferrando, Chem. Phys. Lett. 423, 17 (2006)

    Article  ADS  Google Scholar 

  39. S. Roy, S. Goedecker, V. Hellmann, Phys. Rev. E 77, 056707 (2008)

    Article  ADS  Google Scholar 

  40. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

  41. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  42. F. Baletto, C. Mottet, R. Ferrando, Surf. Sci. 446, 31 (2000)

    Article  ADS  Google Scholar 

  43. L.D. Marks, Rep. Prog. Phys. 57, 603 (1994)

    Article  ADS  Google Scholar 

  44. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  45. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Berkeley, 1981)

  46. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge University Press, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ferrando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochicchio, D., Ferrando, R. Structure and thermal stability of AgCu chiral nanoparticles. Eur. Phys. J. D 66, 115 (2012). https://doi.org/10.1140/epjd/e2012-30054-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30054-0

Keywords

Navigation