Skip to main content

Advertisement

Log in

Resonant charge transfer at dielectric surfaces

Electron capture and release due to impacting metastable nitrogen molecules

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable N2(3Σ+ u ) molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance N2 -(2Π g ) and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green’s function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for Al2O3, MgO, SiO2, and diamond at several kinetic energies of the projectile. With the exception of MgO the coefficients turn out to be of the order of 10-1 over the whole range of kinetic energies. This rather large value is a direct consequence of the shape resonance acting as a relay state for electron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Massines, N. Gherardi, N. Naudé, P. Ségur, Eur. Phys. J. Appl. Phys. 47, 22805 (2008)

    Article  Google Scholar 

  2. Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D 35, 751 (2002)

    Article  ADS  Google Scholar 

  3. R. Brandenburg, V.A. Maiorov, Y.B. Golubovskii, H.E. Wagner, J. Behnke, J.F. Behnke, J. Phys. D 38, 2187 (2005)

    Article  ADS  Google Scholar 

  4. C. Punset, J.P. Boeuf, L.C. Pitchford, J. Appl. Phys. 83, 1884 (1998)

    Article  ADS  Google Scholar 

  5. G. Auday, Ph.J. Galy, J. Appl. Phys. 88, 4871 (2000)

    Article  ADS  Google Scholar 

  6. T.J. Vink, A.R. Balkenende, R.G.F.A. Verbeek, H.A.M. van Hal, S.T. de Zwart, Appl. Phys. Lett. 80, 2216 (2002)

    Article  ADS  Google Scholar 

  7. Y.P. Raizer, Gas discharge physics (Springer-Verlag, Berlin, 1991)

  8. J. Marbach, F.X. Bronold, H. Fehske, Phys. Rev. B 84, 085443 (2011)

    Article  ADS  Google Scholar 

  9. N. Lorente, D. Teillet-Billy, J.P. Gauyacq, Surf. Sci. 432, 155 (1999)

    Article  ADS  Google Scholar 

  10. P. Stracke, F. Wiegershaus, S. Krischok, V. Kempter, Surf. Sci. 396, 212 (1998)

    Article  ADS  Google Scholar 

  11. Y.C. Yeo, T.J. King, C. Hu, J. Appl. Phys. 92, 7266 (2002)

    Article  ADS  Google Scholar 

  12. S. Ciraci, I.P. Batra, Phys. Rev. B 28, 982 (1983)

    Article  ADS  Google Scholar 

  13. J. Robertson, Rep. Prog. Phys. 69, 327 (2006)

    Article  ADS  Google Scholar 

  14. M.J. Rutter, J. Robertson, Comput. Mater. Sci. 10, 330 (1998)

    Article  Google Scholar 

  15. J. Robertson, K. Xiong, S.J. Clark, Phys. Stat. Sol. B 243, 2054 (2006)

    Article  ADS  Google Scholar 

  16. S. Bhagavantam, D.A.A.S.N. Rao, Nature 161, 729 (1948)

    Article  ADS  Google Scholar 

  17. Y.S. Kim, S.H. Yoon, S.G. Ahn, C.R. Hong, H. Yang, Electron. Mater. Lett. 4, 113 (2008)

    Google Scholar 

  18. M. Tobita, S. Ho, J. Chem. Theory Comput. 4, 1057 (2008)

    Article  Google Scholar 

  19. J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974)

    Article  ADS  Google Scholar 

  20. E. Schreiber, H.J. Fitting, J. Electron Spectrosc. Relat. Phenom. 124, 25 (2002)

    Article  Google Scholar 

  21. S. Ciraci, S. Ellialtioǧlu, Phys. Rev. B 25, 4019 (1982)

    Article  ADS  Google Scholar 

  22. U. Kaldor, J. Chem. Phys. 81, 2406 (1984)

    Article  ADS  Google Scholar 

  23. M. Honigmann, R.J. Buenker, H.P. Liebermann, J. Chem. Phys. 125, 234304 (2006)

    Article  ADS  Google Scholar 

  24. D.M. Newns, K. Makoshi, R. Brako, J.N.M. van Wunnik, Phys. Scr. T6, 5 (1983)

    Article  ADS  Google Scholar 

  25. H.D. Hagstrum, Phys. Rev. 96, 336 (1954)

    Article  ADS  Google Scholar 

  26. J.W. Gadzuk, Surf. Sci. 6, 133 (1967)

    Article  ADS  Google Scholar 

  27. P. Kürpick, U. Thumm, Phys. Rev. A 54, 1487 (1996)

    Article  ADS  Google Scholar 

  28. A. Blandin, A. Nourtier, D.W. Hone, J. Phys. 37, 369 (1976)

    Article  Google Scholar 

  29. T. Mii, K. Makoshi, Surf. Sci. 363, 145 (1996)

    Article  ADS  Google Scholar 

  30. A. Dreuw, L.S. Cederbaum, Int. J. Mass Spectrom. 188, 199 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Bronold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marbach, J., Bronold, F.X. & Fehske, H. Resonant charge transfer at dielectric surfaces. Eur. Phys. J. D 66, 106 (2012). https://doi.org/10.1140/epjd/e2012-30014-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30014-8

Keywords

Navigation