Skip to main content
Log in

Spectroscopic study of self and buffer gas broadened CO2 overtone transitions at 780 nm by NIR diode laser spectrometer

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A high resolution near infrared (NIR) diode laser spectrometer along with a multipass cell is used to detect weak rovibronic transitions of carbon dioxide in the NIR region. The self, nitrogen and air broadening line shape parameters of three rovibrational transitions P(44), P(46) and P(48) of 12C16O2 belonging to the (ν 1 + 5   ν 3) overtone band around 780 nm are studied. Wavelength modulation spectroscopy with phase sensitive detection technique at the first harmonic is used to detect the weak overtone transitions of CO2. The observed line shapes are fitted with the standard Voigt profile by a non-linear least squares fitting program in order to determine the self and buffer gas (air and N2) broadening coefficients and line strength parameters of the CO2 transitions. The O2 broadening coefficients are calculated from the experimentally measured N2 and air broadening coefficient values. The measured parameters are compared with the available experimental data and a reasonable agreement has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Ding, P. Macko, D. Romanini, V.I. Perevalov, S.A. Tashkun, J.-L. Teffo, S.-M. Hu, A. Campargue, J. Mol. Spectrosc. 226, 146 (2004)

    Article  ADS  Google Scholar 

  2. J. Wang, B. Chameides, Are Humans Responsible for Global W arming? A review of the facts (Environmental Defense, 2007)

  3. J.L. Sarmiento, S.C. Wofsy, A US Carbon Cycle Science Plan (1999)

  4. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008)

    Article  ADS  Google Scholar 

  5. D.W. Steyert, M. Weber, J.M. Sirota, D.C. Reuter, J. Quant. Spectrosc. Radiat. Transfer. 54, 815 (1995)

    Article  ADS  Google Scholar 

  6. A. Goldman, T.M. Stephen, L.S. Rothman, L.P. Giver, J.-Y. Mandin, R.R. Gamache, C.P. Rinsland, F.J. Murcray, J. Quant. Spectrosc. Radiat. Transfer. 82, 197 (2003)

    Article  ADS  Google Scholar 

  7. B.T. Tolton, D. Plouffe, Appl. Opt. 40, 1305 (2001)

    Article  ADS  Google Scholar 

  8. E. Dufour, F.-M. Breon, P. Peylin, J. Geophys. Res. 109, D09304 (2004)

    Article  ADS  Google Scholar 

  9. W.S. Heaps, S.R. Kawa, NASA Earth Science Technology Conference (Pasadena CA, 2002)

  10. H. Bosch, G.C. Toon, B. Sen, R.A. Washenfelder, P.O. Wennberg, M. Buchwitz, R. de Beek, J.P. Burrows, D. Crisp, M. Christi, B.J. Connor, V. Natraj, Y.L. Yung, J. Geophys. Res. 111, D23302 (2006)

    Article  ADS  Google Scholar 

  11. I. Poucher, V. Zeninari, B. Parvitte, G. Durry, J. Quant. Spectrosc. Radiat. Transfer. 83, 619 (2004)

    Article  ADS  Google Scholar 

  12. W.S. Adams, T. Dunham Jr., Publ. Astron. Soc. Pac. 44, 243 (1932)

    Google Scholar 

  13. J.B. Pollack, J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bezard, C. DeBergh, L.P. Giver, Q. Ma, R. Tipping, Icarus 103, 1 (1993)

    Article  ADS  Google Scholar 

  14. J.S. Li, K. Liu, W.J. Zhang, W.D. Chen, X.M. Gao, J. Mol. Spectrosc. 252, 9 (2008)

    Article  ADS  Google Scholar 

  15. A. Campargue, A. Charvat, D. Permogorov, Chem. Phys. Lett. 223, 567 (1994)

    Article  ADS  Google Scholar 

  16. K.F. Song, Y. Lu, Y. Tan, B. Gao, A.-W. Liu, S.-M. Hu, J. Quant. Spectrosc. Radiat. Transfer. 112, 761 (2011)

    Article  ADS  Google Scholar 

  17. L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, G. Durry, J. Quant. Spectrosc. Radiat. Transfer. 101, 325 (2006)

    Article  ADS  Google Scholar 

  18. A. Lucchesini, S. Gozzini, J. Quant. Spectrosc. Radiat. Transfer. 96, 289 (2005)

    Article  ADS  Google Scholar 

  19. A. Lucchesini, S. Gozzini, J. Quant. Spectrosc. Radiat. Transfer. 103, 74 (2007)

    Article  ADS  Google Scholar 

  20. L. Joly, F. Gibert, B. Grouiez, A. Grossel, B. Parvitte, G. Durry, V. Zeninari, J. Quant. Spectrosc. Radiat. Transfer. 109, 426 (2008)

    Article  ADS  Google Scholar 

  21. J.L. Teffo, O.N. Sulakshina, V.I. Perevalov, J. Mol. Spectrosc. 156, 48 (1992)

    Article  ADS  Google Scholar 

  22. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, L.S. Rothman, V.G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer. 60, 785 (1998)

    Article  ADS  Google Scholar 

  23. M. Gabrysch, C. Corsi, F.S. Pavone, M. Inguscio, Appl. Phys. B 65, 75 (1997)

    Article  ADS  Google Scholar 

  24. A. Karpf, G.N. Rao, Appl. Opt. 48, 408 (2009)

    Article  ADS  Google Scholar 

  25. P. Poddar, S. Mitra, M.M. Hossain, D. Biswas, P.N. Ghosh, B. Ray, Mol. Phys. 108, 1957 (2010)

    Article  ADS  Google Scholar 

  26. G. Herzberg, L. Herzberg, J. Opt. Soc. Am. 43, 1037 (1953)

    Article  ADS  Google Scholar 

  27. A.K. Hui, B.H. Armstrong, A.A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 509 (1977)

    Article  Google Scholar 

  28. W.H. Press, S.A. Teukolsy, W.T. Vetterling, B.P. Flannery, Numerical Recipes inFORTRAN, The Art of Scientific computing (Cambridge University Press, Cambridge, 1992)

  29. L.S. Rothman, et al., J. Quant. Spectrosc. Radiat. Transfer. 110, 533 (2009)

    Article  ADS  Google Scholar 

  30. R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 239, 243 (2006)

    Article  ADS  Google Scholar 

  31. R.A. Toth, C.E. Miller, V.M. Devi, D.C. Benner, L.R. Brown, J. Mol. Spectrosc. 246, 133 (2007)

    Article  ADS  Google Scholar 

  32. T. Le Barbu, B. Parvitte, V. Zeninari, I. Vinogradov, O. Korablev, G. Durry, Appl. Phys. B 82, 133 (2006)

    Article  ADS  Google Scholar 

  33. D.A. Long, K. Bielska, D. Lisak, D.K. Havey, M. Okumura, C.E. Miller, J.T. Hodges, Chem. Phys. 135, 064308 (2011)

    Google Scholar 

  34. T. Le Barbu, V. Zeninari, B. Parvitte, D. Courtois, G. Durry, J. Quant. Spectrosc. Radiat. Transfer. 98, 264 (2006)

    Article  ADS  Google Scholar 

  35. T. Hikida, K.M.T. Yamada, M. Fukabori, T. Aoki, T. Watanabe, J. Mol. Spectrosc. 232, 202 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poddar, P., Ray, B. Spectroscopic study of self and buffer gas broadened CO2 overtone transitions at 780 nm by NIR diode laser spectrometer. Eur. Phys. J. D 66, 228 (2012). https://doi.org/10.1140/epjd/e2012-20758-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20758-4

Keywords

Navigation