Skip to main content
Log in

Time of Flight system to investigate positronium cooling

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A positronium Time of Flight (TOF) apparatus, conceived to work with continuous positron beams of intensity up to ~106 positrons/s, was developed. The geometry of the TOF chamber and the acquisition chain are described in detail. The performances of the set up were preliminary tested with a laboratory positron beam of ~5 × 103 positrons/s by measuring the Time of Flight of Ps emitted from oxidized nanochannels produced in a Si single crystal. A TOF spectrum of ~104 events was collected in 9 days with a time resolution of 8 ns. The analysis of the TOF spectrum is discussed. This apparatus is going to be assembled at the intense positron source NEPOMUC at FRM-II reactor, where the measurement time of each spectrum will be reduced to less than 2 h, making this TOF system appropriate to investigate positronium emission after cooling in porous materials held at cryogenic temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Fee, S. Chu, A.P. Mills Jr., R.J. Chichester, D.M. Zuckerman, E.D. Shaw, K. Danzmann, Phys. Rev. A 48, 192 (1993)

    Article  ADS  Google Scholar 

  2. F. Castelli, I. Boscolo, S. Cialdi, M.G. Giammarchi, D. Comparat, Phys. Rev. A 78, 052512 (2008)

    Article  ADS  Google Scholar 

  3. M. Charlton, Phys. Lett. A 143, 143 (1990)

    Article  ADS  Google Scholar 

  4. A. Kellerbauer et al., Nucl. Instrum. Meth. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  5. P.M. Platzman, A.P. Mills Jr., Phys. Rev. B 49, 454 (1994)

    Article  ADS  Google Scholar 

  6. R.S. Brusa, A. Dupasquier, in Physics with many positrons, edited by R.S. Brusa, A. Dupasquier, A.P. Mills Jr. (IOS Press, Amsterdam, Oxford, Tokyo, Washington DC, 2010), p. 245

  7. Y. Nagashima, Y. Morinaka, T. Kurihara, Y. Nagai, T. Hyodo, T. Shidara, K. Nakahara, Phys. Rev. B 58, 12676 (1998)

    Article  ADS  Google Scholar 

  8. H. Saito, T. Hyodo, in New Direction in Antimatter Chemistry and Physics, edited by C.M. Surko, F.A. Gianturco (Kluwer, Dordrecht, 2001), p. 101

  9. A.P. Mills, L. Pfeiffer, Phys. Rev. Lett. 43, 26 (1979)

    Article  Google Scholar 

  10. R.H. Howell, I.J. Rosenberg, M.J. Fluss, R.E. Goldberg, R.B. Laughlin, Phys. Rev. B 35, 5303 (1987)

    Article  ADS  Google Scholar 

  11. D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010)

    Article  ADS  Google Scholar 

  12. R.S. Vallery, P.W. Zitzewitz, D.W. Gidley, Phys. Rev. Lett. 90, 203402 (2003)

    Article  ADS  Google Scholar 

  13. R.S. Yu et al., Appl. Phys. Lett. 83, 4966 (2003)

    Article  ADS  Google Scholar 

  14. C. He, T. Ohdaira, N. Oshima, M. Muramatsu, A. Kinomura, R. Suzuki, T. Oka, Y. Kobayashi, Phys. Rev. B 75, 195404 (2007)

    Article  ADS  Google Scholar 

  15. S. Mariazzi, A. Salemi, R.S. Brusa, Phys. Rev. B 78, 085428 (2008)

    Article  ADS  Google Scholar 

  16. S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, R.S. Brusa, Phys. Rev. B 81, 235418 (2010)

    Article  ADS  Google Scholar 

  17. S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010)

    Article  ADS  Google Scholar 

  18. D.B. Cassidy, T.H. Hisakado, V.E. Meligne, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 82, 052511 (2010)

    Article  ADS  Google Scholar 

  19. S. Mariazzi, L. Di Noto, G. Nebbia, R.S. Brusa, submitted to Phys. Rev. A

  20. C. Hugenschmidt, in Physics with many positrons, edited by R.S. Brusa, A. Dupasquier, A.P. Mills Jr. (IOS, Amsterdam, SIF, Bologna, 2010), p. 399

  21. A. Zecca, M. Bettonte, J. Paridaens, G.P. Karwasz, R.S. Brusa, Meas. Sci. Technol. 9, 409 (1998)

    Article  ADS  Google Scholar 

  22. H. Iijima, T. Asonuma, T. Hirose, M. Irako, K. Kadoya, T. Kumita, B. Matsumoto, K. Wada, M. Washio, Nucl. Instrum. Meth. Phys. Res. A 483, 641 (2002)

    Article  ADS  Google Scholar 

  23. D.W. Gidley, A.R. Koymen, T. Weston Capehart, Phys. Rev. Lett. 49, 1779 (1982)

    Article  ADS  Google Scholar 

  24. R.H. Howell, I.J. Rosenberg, M.J. Fluss, R.E. Goldberg, R.B. Laughlin, Phys. Rev. B 35, 5303 (1987)

    Article  ADS  Google Scholar 

  25. E. Mazzucca, M. Benetti, G.-F. Dalla Betta, C. Piemonte, S. Mariazzi, R.S Brusa, submitted to JINST

  26. A.P. Mills Jr., E.D. Shaw, M. Leventhal, R.J. Chichester, D.M. Zuckerman, Phys. Rev. B 44, 5791 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Di Noto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Noto, L., Mariazzi, S., Bettonte, M. et al. Time of Flight system to investigate positronium cooling. Eur. Phys. J. D 66, 118 (2012). https://doi.org/10.1140/epjd/e2012-20674-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20674-7

Keywords

Navigation